Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 82
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

(a) Saddle-node (fold)

A saddle-node occurs when an eigenvalue crosses through zero: =0\lambda=0=0 is a simple root of the characteristic polynomial. Algebraically this means

detJ(Xc)=0(i.e. c3=0),\det J(X_c) = 0 \quad\text{(i.e. } c_3 = 0\text{),}detJ(Xc)=0(i.e. c3=0),

with the zero eigenvalue being simple (algebraic multiplicity 1, geometric multiplicity 1). Equivalently:

c3=0c_3 = 0c3=0 and c20c_2 \neq 0c2=0 (generically).
Rank condition: rankJ=2\mathrm{rank}\,J = 2rankJ=2 (one dimensional nullspace).
Nondegeneracy / transversality for a saddle-node requires:

Let vvv span the right nullspace: Jv=0J v = 0Jv=0.
Let www span the left nullspace: wJ=0w^\top J = 0wJ=0.
Normalization wv=1w^\top v = 1wv=1.
Define
 a=12wDX2F(Xc)[v,v](quadratic coefficient),b=wEF(Xc),a \;=\; \tfrac{1}{2}\, w^\top D_X^2 F(X_c)[v,v] \quad\text{(quadratic coefficient)},\qquad b \;=\; w^\top \partial_{\mu_E} F(X_c),a=21wDX2F(Xc)[v,v](quadratic coefficient),b=wEF(Xc),
where DX2F[X][u,v]D_X^2 F[X][u,v]DX2F[X][u,v] is the bilinear form of second derivatives (Hessian applied to u,vu,vu,v).
A generic saddle-node requires a0a\neq 0a=0 and b0b\neq 0b=0. In our model EF=(0,1,0)\partial_{\mu_E}F=(0,1,0)^\topEF=(0,1,0) so b=w2b = w_2b=w2 (the second component of the left nullvector).
Interpretation: if a0a\neq0a=0 and b0b\neq0b=0 then locally near the fold the reduced scalar normal form is

y=ay2+b(Ec)+higher orders,\dot y = a y^2 + b (\mu_E-\mu_c) + \text{higher orders},y=ay2+b(Ec)+higher orders,

so the local scaling of the two merging equilibria and their behavior follow classical saddle-node normal form.

(b) Hopf

A Hopf bifurcation requires a pair of complex conjugate eigenvalues to cross the imaginary axis:

At Hopf, 1,2=i0\lambda_{1,2} = \pm i\omega_01,2=i0 (simple pair) and the third eigenvalue has (3)0\Re(\lambda_3) \neq 0(3)=0.
Algebraically at the Hopf point the cubic coefficients satisfy (Hurwitz borderline)
c1c2=c3,c1>0,c2>0,c3>0,c_1 c_2 = c_3,\qquad c_1>0,\quad c_2>0,\quad c_3>0,c1c2=c3,c1>0,c2>0,c3>0,
and the crossing is transversal:
ddE(1,2)E=h0.\left.\frac{d}{d\mu_E}\Re(\lambda_{1,2})\right|_{\mu_E=\mu_h} \neq 0.dEd(1,2)E=h=0.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun