Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 82
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

0=PPmax(P)2+(PKK+TBPTBLSE(E))P+(ESE(E)T).\begin{aligned} 0 &= -\frac{\rho_P}{P_{\max}}(P^*)^2 \;+\; \left(\rho_P - \kappa_K K + \delta_T \dfrac{B_P}{\alpha_T B_L S_E(E^*)}\right) P^* \;+\; \left(\eta_E S_E(E^*) - \delta_T\right). \end{aligned}0=PmaxP(P)2+(PKK+TTBLSE(E)BP)P+(ESE(E)T).

Define for compactness (all quantities evaluated at EE^*E when relevant):

A2(E)PPmax,A1(E)PKK(E,)+TBPTBLSE(E),A0(E)ESE(E)T.\begin{aligned} A_2(E^*) &\equiv -\frac{\rho_P}{P_{\max}},\\[4pt] A_1(E^*) &\equiv \rho_P - \kappa_K K(E^*,\Theta) + \delta_T \dfrac{B_P}{\alpha_T B_L S_E(E^*)},\\[4pt] A_0(E^*) &\equiv \eta_E S_E(E^*) - \delta_T. \end{aligned}A2(E)A1(E)A0(E)PmaxP,PKK(E,)+TTBLSE(E)BP,ESE(E)T.

Then (7) becomes the scalar quadratic in PP^*P:

A2(E)(P)2+A1(E)P+A0(E)=0.(8)\boxed{ \; A_2(E^*) (P^*)^2 + A_1(E^*) P^* + A_0(E^*) \;=\; 0. \; } \tag{8}A2(E)(P)2+A1(E)P+A0(E)=0.(8)

Interpretation: For each admissible EE^*E, the possible PP^*P satisfy (8). The number of real, nonnegative roots PP^*P of this quadratic (subject to 0PPmax0\le P^*\le P_{\max}0PPmax and that TT^*T from (5) lies in [0,1][0,1][0,1]) determines how many equilibria the full system has for that EE^*E. Multiplicity (double root) occurs when discriminant vanishes --- this is the fold condition.

4. Fold condition (saddle-node) in algebraic form

A saddle-node (fold) occurs when two equilibria coalesce; algebraically this is a double root of (8) with respect to PP^*P for some EE^*E. The double-root condition is:

\begin{aligned} F(P^*,E^*) &\equiv A_2(E^*) (P^*)^2 + A_1(E^*) P^* + A_0(E^*) = 0, \tag{9a}\\[4pt] \frac{\partial F}{\partial P}(P^*,E^*) &\equiv 2 A_2(E^*) P^* + A_1(E^*) = 0. \tag{9b} \end{aligned}

Equations (9a)--(9b) eliminate the PP^*P dependence: solving (9b) gives the candidate double root:

P=A1(E)2A2(E).P^* = -\dfrac{A_1(E^*)}{2 A_2(E^*)}.P=2A2(E)A1(E).

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun