Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 82
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Transversality (nonzero drift of eigenvalue): ddRe()=h0.\left. \dfrac{d}{d\mu} \mathrm{Re}\,\lambda(\mu)\right|_{\mu=\mu_h} \neq 0.ddRe()=h=0. This can be checked using the formula:
ddh=wF(Xh;h)wv,\left.\dfrac{d\lambda}{d\mu}\right|_{\mu_h} = \dfrac{w^\top \partial_\mu F(X_h;\mu_h)}{w^\top v},ddh=wvwF(Xh;h),
where vvv is the complex right eigenvector Jhv=i0vJ_h v = i\omega_0 vJhv=i0v and www is the corresponding left eigenvector normalized wv=1w^\top v = 1wv=1. The real part of this derivative must be nonzero.
First Lyapunov coefficient 1\ell_11 (nondegeneracy): compute 1\ell_11 at (Xh,h)(X_h,\mu_h)(Xh,h). If Re10\mathrm{Re}\,\ell_1 \neq 0Re1=0, the Hopf is generically nondegenerate. The sign of Re1\mathrm{Re}\,\ell_1Re1 determines supercritical (Re1<0\mathrm{Re}\,\ell_1<0Re1<0) or subcritical (Re1>0\mathrm{Re}\,\ell_1>0Re1>0) Hopf.
3. Formula for the first Lyapunov coefficient 1\ell_11

Follow the standard multilinear form notation. Let A=JhA = J_hA=Jh. Define bilinear and trilinear maps:

B(u,v)=D2F(Xh)[u,v]B(u,v) = D^2F(X_h)[u,v]B(u,v)=D2F(Xh)[u,v] vector in Rn\mathbb{R}^nRn.
C(u,v,w)=D3F(Xh)[u,v,w]C(u,v,w) = D^3F(X_h)[u,v,w]C(u,v,w)=D3F(Xh)[u,v,w].
Let vCnv\in\mathbb{C}^nvCn be the right eigenvector for eigenvalue i0i\omega_0i0, and wCnw\in\mathbb{C}^nwCn be the left eigenvector normalized so that wv=1w^\ast v = 1wv=1 (here ww^\astw is conjugate transpose). Then the first Lyapunov coefficient 1\ell_11 is (one common expression --- see Kuznetsov / Guckenheimer & Holmes):

1=120Re(wC(v,v,v)2wB(v,(A2i0I)1B(v,v))+wB(v,(A0I)1B(v,v))),\ell_1 \;=\; \dfrac{1}{2\omega_0} \operatorname{Re}\Big( w^\ast C(v,\bar v, v) - 2 w^\ast B\big(v, (A - 2 i\omega_0 I)^{-1} B(v,v)\big) + w^\ast B\big(\bar v, (A - 0\cdot I)^{-1} B(v,\bar v)\big) \Big),1=201Re(wC(v,v,v)2wB(v,(A2i0I)1B(v,v))+wB(v,(A0I)1B(v,v))),

where v\bar vv is the complex conjugate of vvv, and (AI)1(A - \lambda I)^{-1}(AI)1 denotes the resolvent on the subspace complementary to the center (in practice one solves appropriate linear systems for the vectors appearing).

This expression may look forbidding; operationally we do:

Compute vvv and www for JhJ_hJh at h\mu_hh, normalize wv=1w^\ast v = 1wv=1.
Compute B(v,v)B(v,v)B(v,v), then solve (A2i0I)q=B(v,v)(A - 2 i\omega_0 I)q = B(v,v)(A2i0I)q=B(v,v) for qqq (unique provided 2i02i\omega_02i0 is not an eigenvalue).
Compute B(v,v)B(v,\bar v)B(v,v), then solve Ar=B(v,v)A r = B(v,\bar v)Ar=B(v,v) for rrr (unique as 0 is not an eigenvalue on the complement).
Compute the inner products wC(v,v,v)w^\ast C(v,\bar v,v)wC(v,v,v), wB(v,q)w^\ast B(v,q)wB(v,q), wB(v,r)w^\ast B(\bar v,r)wB(v,r).
Assemble 1\ell_11 with the formula above.
If Re(1)<0\mathrm{Re}(\ell_1) <0Re(1)<0 supercritical Hopf (stable small-amplitude limit cycle emerges). If Re(1)>0\mathrm{Re}(\ell_1) >0Re(1)>0 subcritical (unstable cycle, dangerous: possible sudden large amplitude oscillations).

4. Practical simplification for our model

The vector field terms are low-order polynomials/sigmoids; you can compute D2FD^2FD2F and D3FD^3FD3F symbolically. For example, the logistic term in P\dot PP supplies quadratic nonlinearity, SE(E)S_E(E)SE(E) supplies nonlinear terms in EEE. The explicit derivatives (partial derivatives up to third order) are straightforward to compute symbolically once you fix the functional forms (we used logistic / Hill / tanh\tanhtanh earlier).
Because our primary control parameter \mu enters E\dot EE linearly, the transversality derivative F\partial_\mu FF is simple (unit vector in EEE-direction). This simplifies the evaluation of dd\dfrac{d\lambda}{d\mu}dd.
If we work with the reduced 3D core (T,E,P)(T,E,P)(T,E,P), the Jacobian is 333\times333; numerically computing eigenvectors and solving the small linear systems for q,rq,rq,r is routine and stable.
c. Suggested workflow to produce explicit analytic expressions & numbers

1. Choose reduced order --- recommended: start with n=3n=3n=3 (T,E,P) because it captures the essential bifurcation (trust, economy, protest) and is algebraically tractable. Keep HHH as a slave variable if desired (or include it later for two-stage analysis). Document the timescale assumptions if you eliminate variables.
2. Compute fixed points analytically (if possible) or solve numerically for X(,)X^*(\mu,\Theta)X(,). For analytic expressions, you may need to adopt simplifying approximations (e.g., small PPP, linearize SES_ESE near threshold).
3. Form Jacobian J(X;,)J(X^*;\mu,\Theta)J(X;,) and identify c\mu_cc where det(J)\det(J)det(J) or appropriate characteristic polynomial meets the bifurcation condition (zero eigenvalue for fold; pair at i0\pm i\omega_0i0 for Hopf).
4. Compute nullvectors / eigenvectors v,wv,wv,w at the bifurcation point.
5. Evaluate multilinear forms D2F,D3FD^2F, D^3FD2F,D3F at XcX_cXc. These are small arrays of partial derivatives; for a 333-dimensional system you need up to 27 third-order partials (but many are zero for standard terms).
6. Compute normal form coefficients:
For fold: compute a=12wD2F[v,v]a = \tfrac12 w^\top D^2F[v,v]a=21wD2F[v,v] and b=wFb = w^\top \partial_\mu Fb=wF.
For Hopf: compute 1\ell_11 using the algorithm above.
7. Classify the bifurcation using signs of aba bab (fold) and Re1\mathrm{Re}\,\ell_1Re1 (Hopf). Produce normal form approximations and asymptotic estimates for amplitude and period (Hopf) and for the location of saddle-node folds.
8. Produce bifurcation diagrams (P steady states vs \mu) using numerical continuation (AUTO, MATCONT or custom continuation) --- this validates normal-form approximations and shows global structure.
9. Interpretation: express crit\mu_{\mathrm{crit}}crit implicitly as a function of \Theta by locating \mu such that the fold condition holds. Where possible, perform local asymptotic expansion to show crit()=0+iii+O(2)\mu_{\mathrm{crit}}(\Theta) = \mu_{0} + \sum_i \beta_i \Theta_i + O(\|\Theta\|^2)crit()=0+iii+O(2) --- the i\beta_ii are interpretable sensitivities.
d. Worked symbolic template

We are now:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun