Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 82
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

with a1=trJEPGa_1 = -\operatorname{tr}J_{EPG}a1=trJEPG, a2a_2a2 the sum of principal minors of JEPGJ_{EPG}JEPG, and a3=detJEPGa_3=\det J_{EPG}a3=detJEPG.
A (generic) Hopf occurs when the Routh--Hurwitz equalities are met:

a1>0,a2>0,a3>0,anda1a2=a3,a_1>0,\quad a_2>0,\quad a_3>0,\quad\text{and}\quad a_1 a_2 = a_3,a1>0,a2>0,a3>0,anda1a2=a3,

with ddERe=h0 \tfrac{d}{d\mu_E}\operatorname{Re}\lambda\big|_{\mu=\mu_h} \neq 0dEdRe=h=0. The first Lyapunov coefficient 1\ell_11 (computed from multilinear terms) sets the criticality: 1<0\ell_1<0\Rightarrow1<0 supercritical (small stable cycles); 1>0\ell_1>0\Rightarrow1>0 subcritical (unstable cycles and hysteresis).

3.B.2 Numerical search and outcome (what we found)

I implemented the 4D model and performed a coarse Hopf scan over E[0,1]\mu_E\in[0,1]E[0,1] for the four leadership profiles (Soeharto, SBY, Jokowi, Prabowo), then attempted 1\ell_11 estimation via finite-difference multilinear forms. With conservative (empirically plausible) gains and lags tied to leadership:

No Hopf crossings were detected in the scanned range; the real parts of the most oscillatory eigenpairs remained negative where imag parts were nonzero.
Interpretation: under the baseline mapping, the feedback loop (PGE,P)(P \to G \to E,P)(PGE,P) is not quite "hot" enough (insufficient gain and/or lag relative to damping c4,dEc_4, d_Ec4,dE) to overturn fold-dominated dynamics.
This result does not rule out Hopf; it diagnoses that the current gain--lag--damping combination sits on the stable side of the Routh--Hurwitz boundary.

3.B.3 How to make Hopf appear (testable parameter windows)

From the linear conditions and inspection of JJJ, three levers move a1a2a_1 a_2a1a2 toward a3a_3a3:

1. Increase effective lag or inertia
Raise \tau (slower policy) or insert an additional first-order lag in the GGG channel. Politically: sluggish, procedural or fragmented response.
2. Raise loop gain
Increase G\phi_GG and G\chi_GG (policy acts strongly on EEE and PPP), and/or kpk_pkp (policy reacts aggressively to PPP). High-gain + delay = overshoot oscillations.
3. Reduce intrinsic damping
Lower c4c_4c4 (less protest damping via cooptation/repression blend) or dEd_EdE (slower economic dissipation).
A practical continuation plan for the manuscript:

Treat :=(GGkp)\zeta:=\tau\cdot (\phi_G\,\chi_G\,k_p):=(GGkp) as a Hopf driver. Continue equilibria in (E,)(\mu_E,\zeta)(E,) and track the Hopf curve H()\mathcal{H}(\Theta)H() where a1a2=a3a_1 a_2=a_3a1a2=a3.
Expect Hopf to emerge for high \zeta (slow + strong policy loop) and diminish for large ktk_tkt (trust-sensitive policy reducing overshoot).
Policy reading: fast, trust-weighted responses (high ktk_tkt, moderate kpk_pkp, moderate G,G\phi_G,\chi_GG,G, small \tau) suppress protest waves; slow, over-reactive responses amplify them.

3.B.4 Normal form and interpretation

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun