Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Bifurcation-Based Predictive Modelling of Socio-Political Dynamics

2 September 2025   10:12 Diperbarui: 2 September 2025   10:12 29
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Core Equation (Source: Privat Document)

pi(t)=Pr(black horse=aiH(t)>Hc, I0),ipi(t)=1.p_i(t) = \Pr\big(\text{black horse}=a_i \mid H(t)>H_c,\ \mathcal{I}_0\big), \qquad \sum_i p_i(t)=1.

Both are computed via ensemble simulation or via semi-analytical first-passage approximations.

Key derived metrics

Mean first-passage time (MFPT): =E[min{t:H(t)>Hc}]\tau = \mathbb{E}[\min\{t: H(t)>H_c\}].
Hazard rate: h(t)=fT(t)1FT(t)h(t) = \frac{f_T(t)}{1-F_T(t)}, where FTF_T is CDF of first-passage time.
Actor likelihood score: computed from actor-specific mobilization potential hi(t)h_i(t) (see next section).
2) Data & signal construction for H(t)H(t) and actors

Build H(t)H(t) as a composite index:

H(t)=wsSsocial(t)+wmSmedia(t)+woSorgan(t)+wfSfund(t)H(t) \;=\; w_{s} \cdot S_{\text{social}}(t) \;+\; w_{m}\cdot S_{\text{media}}(t) \;+\; w_{o}\cdot S_{\text{organ}}(t) \;+\; w_{f}\cdot S_{\text{fund}}(t)

Components (normalized 0--1):

Social mobilization signal SsocialS_{\text{social}}: protest organizational metrics --- mobilization rate, event clustering, cross-sector alliances (student+labor+ojol).
Media attention signal SmediaS_{\text{media}}: velocity of mentions, sentiment divergence, follower growth rate of candidate actors, hashtag virality (use platform APIs).
Organizational capacity SorganS_{\text{organ}}: existence and activity of coordinating networks (NGO/ormas nodes, regional cadres), logistic capability proxies (crowdfunding, transport coordination).
Funding/logistics SfundS_{\text{fund}}: donation flows, crowdfunding spikes, sudden transfers to mobilization wallets.
Weights ww set from prior knowledge or via training (e.g., logistic regression on past emergence events). Normalize so H[0,1]H\in[0,1] (or scale to operational units).

Actor mobilization vector: for each candidate actor aia_i, compute actor-specific signals:

mi(t)m_i(t): growth rate of followers / engagement;
ni(t)n_i(t): leadership network centrality (mentions connecting to organizing nodes);
ri(t)r_i(t): rhetoric resonance index (sentiment + framing alignment with grievances).
Combine into actor score si(t)[0,1]s_i(t)\in[0,1]. Then actor conditional probability given HH is:

pi(t)=si(t)jsj(t)p_i(t) \;=\; \frac{s_i(t)^\gamma}{\sum_j s_j(t)^\gamma}

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun