Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Bifurcation-Based Predictive Modelling of Socio-Political Dynamics

2 September 2025   10:12 Diperbarui: 2 September 2025   10:12 29
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Core Equation (Source: Privat Document)

State-dependence of noise (multiplicative noise) is crucial: when PP is already high or TT low, identical shocks have bigger social impact---captured by letting GG grow with PP and with (1T)(1-T).

2. Noise-induced tipping and mean first-passage times

In deterministic bifurcation theory, transitions occur as parameters cross critical values. With noise, two additional phenomena arise:

Noise-induced tipping: even if control parameters \theta are subcritical (<c\mu<\mu_c), sufficiently large or persistent noise can push the system across basins of attraction.
Stochastic resonance and coherence resonance: moderate noise can amplify oscillatory modes (if near a Hopf bifurcation), producing intermittent waves of unrest.

A practical metric: mean first-passage time (MFPT) to a critical threshold (e.g., PP crossing PcP_c or HH crossing HcH_c). MFPT can be estimated numerically by Monte Carlo simulation of the SDE ensemble or approximated analytically in low-noise regimes via Kramers' escape formula (generalized to multi-dimensional systems via large deviation theory).

3. Parameter sensitivity: local and global methods

Parameter uncertainty is inevitable. To produce operational forecasts we must quantify how model outputs (probabilities of crossing thresholds in given windows, steady-state means, autocorrelation indicators) depend on parameters.

Approaches:

Local sensitivity (linearized): compute Jacobian sensitivities x/\partial x^\ast/\partial \theta and finite differences of output metrics for small perturbations. Useful for quick diagnostics and to identify the most influential parameters near an operating point.
Global sensitivity (variance-based): e.g., Sobol indices or Fourier Amplitude Sensitivity Testing (FAST). These decompose output variance over the full parameter ranges and identify interactions and nonlinear sensitivities. Particularly important when parameters (e.g., K,U,P,E,\rho_{\mathcal{K}},\rho_U,\alpha_P,\theta_E,\kappa) interact to produce bifurcation behavior.
Screening methods: Morris method to rank parameters when computational budgets are limited.

Recommended parameter sets to probe thoroughly:

Policy responsiveness: U,K\rho_U,\rho_{\mathcal{K}} (and ratio rr).
Trust and decay rates: U,K,T\eta_U,\eta_{\mathcal{K}},\lambda_T.
Economic coupling: P,U,E,E,\phi_P,\phi_U,\mu_E,\theta_E,\kappa.
Black-horse growth: P,E,T,H\alpha_P,\alpha_E,\beta_T,\gamma_H.
Noise amplitudes: entries of G()G(\cdot) and jump rate/size.
4. Practical calibration and uncertainty quantification

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun