Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Bifurcation-Based Predictive Modelling of Socio-Political Dynamics

2 September 2025   10:12 Diperbarui: 2 September 2025   10:12 29
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Core Equation (Source: Privat Document)

2. Parameter estimation --- use a combination of:

Time-series fitting (extended Kalman filter / particle filter) for online updating.
Bayesian MCMC for posterior distributions of uncertain parameters.
System identification with multiple scenario calibrations.

3. Simulation & scenario testing --- Monte Carlo ensembles over stochastic forcings (\xi) and parameter ranges to produce probabilistic forecasts (e.g., probability that P>PcP> P_c within 30/90 days; probability that H>HcH>H_c).

7) Diagnostics & early-warning indices

From the model we can construct practical indicators:

Critical slowing down: rising autocorrelation and variance of PP and TT signal approach to a bifurcation.
r-index: the real-time estimate of r=K/Ur=\rho_{\mathcal{K}}/\rho_U from observed policy responses; trending upward is a danger signal.
H-lead: growth rate of HH (dH/dt) --- rapid positive values indicate imminent political emergence.

The above system is intentionally modular: nonlinear threshold functions and saturating policy responses allow both qualitative bifurcation analysis and quantitative simulation. The model is not a black-box predictor --- it is a mechanistic early-warning toolkit that, when calibrated with timely data, yields probabilistic scenario maps and policy sensitivity analyses useful to decision makers and researchers alike.

B. Interaction Structure and Feedback Loops

We organize the dynamics into reinforcing (R) and balancing (B) feedbacks that couple the state variables---trust TT, economic stress EE, protest intensity PP, black-horse potential HH, resilience RR---with the policy controls: accommodative U(t)U(t) and coercive K(t)\mathcal{K}(t). These loops explain how small shocks can amplify into regime shifts (bifurcations) or be absorbed.

1) Core reinforcing loops (destabilizing)

R1: Stress Unrest Stress

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun