Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Bifurcation-Based Predictive Modelling of Socio-Political Dynamics

2 September 2025   10:12 Diperbarui: 2 September 2025   10:12 29
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Core Equation (Source: Privat Document)

The system's fate hinges on the balance between R-loops (amplifiers) and B-loops (dampers), with the policy-responsiveness ratio rr acting as the principal bifurcation lever. Mapping and monitoring these loops in real time converts the model into an actionable early-warning and scenario-testing instrument.

C. Stochastic Shocks and Parameter Sensitivity

The deterministic skeleton of the system (Section III.A--B) provides a map of endogenous feedbacks and potential bifurcation loci. Real-world socio-political dynamics, however, are continually driven and perturbed by stochastic events---viral media moments, sudden commodity price spikes, accidents, revealed scandals, or foreign shocks. This section formalizes how noise is incorporated, how it modifies the bifurcation picture (noise-induced tipping), and how sensitivity analysis of parameters should be conducted to produce robust, operational forecasts.

1. Modeling stochastic forcing

We write the system compactly as a stochastic differential equation (SDE):

dXt=F(Xt,)dt+G(Xt,)dWtdX_t \;=\; F(X_t,\theta)\,dt \;+\; G(X_t,\theta)\,dW_t

where

Xt=(P,T,E,H,R)X_t=(P,T,E,H,R)^\top is the state vector,
FF is the deterministic drift (the right-hand side of the ODEs from III.A),
\theta denotes the set of model parameters,
G(Xt,)G(X_t,\theta) is a state-dependent diffusion matrix (amplitude of noise),
WtW_t is a vector Wiener process (Brownian motion) or a jump process for discontinuous shocks.

Two noise classes are practical and important:

a. Continuous small-amplitude noise (Gaussian): models aggregate micro-shocks (daily rumor flow, small price volatility). Characterized by diffusion terms:
(t)(X)dWt.\; \xi(t) \approx \sigma(X)\,dW_t.

b. Discrete big jumps (Poisson or compound Poisson): rare, high-impact events (sudden scandal release, a high-casualty incident). Modeled via a jump term:
dXt=Fdt+GdWt+JdNtdX_t = F\,dt + G\,dW_t + J\,dN_t
where NtN_t is a Poisson counting process and JJ is a jump amplitude distribution.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun