Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Bifurcation-Based Predictive Modelling of Socio-Political Dynamics

2 September 2025   10:12 Diperbarui: 2 September 2025   10:12 29
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
(Core Equation (Source: Privat Document)

To be actionable, calibrate the model with multi-source empirical data and quantify posterior uncertainty:

Data sources: polling/time-series for trust TT; CPI, unemployment, food prices for EE; event databases and social-media metrics for PP and HH; budget/execution data and security deployment logs for U,KU,\mathcal{K}.
Estimation methods:
State-space estimation: Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) for online updating when noise is moderate and near-Gaussian.
Particle Filters: for strongly nonlinear, non-Gaussian regimes and for simultaneous state-parameter estimation.
Bayesian MCMC / Sequential Monte Carlo: to get full posterior distributions of parameters and predictive distributions for quantities of interest (e.g., Pr(P>Pc within 30 days) \Pr(P > P_c \text{ within } 30\text{ days})).
Robustness checks: run ensembles across parameter posteriors; compute credible intervals for forecast probabilities and MFPT estimates.
5. Sensitivity diagnostics that map to policy levers

Translate sensitivity results into policy priorities:

If Sobol indices show U\rho_U accounts for large variance in probability of escalation, prioritize accelerating relief programs and improving responsiveness.
If P\alpha_P (black-horse sensitivity to protest) is highly influential, invest in narrative/communication strategies and monitoring influencer networks.
If noise amplitude of media shocks (component of GG) is crucial, prioritize rapid counter-disinformation and transparency campaigns.

6. Early-warning metrics under stochasticity

Use combined deterministic and stochastic diagnostics:

Critical slowing down indicators: rising variance and lag-1 autocorrelation in PP or TT. Under stochastic forcing, these metrics increase before bifurcation but must be detrended and filtered for seasonality and exogenous cycles.
Skewness and kurtosis: heavy tails signal rising probability of extreme events.
Return time shortening: decreasing mean time between exceedances of moderate thresholds implies approach to criticality.
R-index trend: monitor estimated rt=^K(t)/^U(t)r_t=\hat\rho_{\mathcal{K}}(t)/\hat\rho_U(t) --- an upward trend is a red flag even if other indicators are stable.
7. Scenario generation and policy stress testing

Implement Monte Carlo scenario engines that sample:

Parameter vectors \theta from calibrated posteriors,
Noise realizations (both continuous and jump processes),
Alternative policy response rules (different \rho and cap values).

Outcomes to report:

Probability distributions (with credible intervals) of P(t)P(t), T(t)T(t), H(t)H(t) at 7/30/90/180 day horizons.
MFPTs to critical thresholds.
Bifurcation maps showing regions in parameter space associated with high risk (e.g., r>rcr > r_c and E<c\theta_E < \theta_c).

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun