- Sierpiski (1915) -- Fractal geometry foundations. Â
- Calcagni (2012, *PRD*) -- Fractal field theory. Â
- LIGO Collaboration (2023) -- Current GW sensitivity. Â
CHAPTER 3. Mathematical Derivations Â
Eigenmode Solutions
1. Quantized Spectra on a 3-Torus
For a spatially flat universe modeled as a 3-torus with side length \( L \), periodic boundary conditions enforce quantized wavevectors: Â \[\mathbf{k}_n = \frac{2\pi}{L} \mathbf{n}, \quad \mathbf{n} \in \mathbb{Z}^3,\] Â
where \( \mathbf{n} = (n_x, n_y, n_z) \) are integers. The eigenmodes of the Laplacian \( \Delta ) are plane waves: Â
\[\psi_n(\mathbf{x}) = \frac{1}{\sqrt{L^3}} e^{i \mathbf{k}_n \cdot \mathbf{x}},\] Â
with eigenvalues \( k_n^2 = \|\mathbf{k}_n\|^2 \). This discretization naturally explains hierarchical structure formation, as modes with \( n = |\mathbf{n}| \) correspond to comoving scales \( \lambda_n = L/n \). Â
2. Dodecahedral Space and Icosahedral Harmonics