Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Nature

Resonant Spacetime Hypothesis 2.0

14 April 2025   12:07 Diperbarui: 14 April 2025   12:07 168
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Nature. Sumber ilustrasi: Unsplash

To incorporate spacetime resonance into gravity, we extend Einstein's field equations by introducing a boundary curvature term \(\kappa \mathcal{R}_{\text{boundary}}\):  

\[G_{\mu\nu} + \kappa \mathcal{R}_{\text{boundary}} = 8\pi G T_{\mu\nu},\]  

where:  

- \(\mathcal{R}_{\text{boundary}}\) encodes the eigenmode energy density from spacetime's compact topology.  

- \(\kappa\) is a coupling constant with units of \([L]^{-2}\), set by the resonant scale (e.g., \(\kappa \sim 1/R_H^2\), where \(R_H\) is the Hubble radius).  

Physical Interpretation

- The term \(\mathcal{R}_{\text{boundary}}\) acts as a nonlocal constraint, enforcing standing-wave solutions in the metric \(g_{\mu\nu}\).  

- Analogous to Dirichlet boundary conditions in a vibrating membrane, but applied covariantly to 4D spacetime.  

Energy Conditions and Stability 

1. Weak Energy Condition: \(T_{\mu\nu} u^\mu u^\nu \geq 0\) holds if \(\mathcal{R}_{\text{boundary}} \leq 0\) (anti-nodes correspond to positive energy).  

2. Stability Analysis: Linear perturbations \(\delta g_{\mu\nu}\) yield a modified wave equation:  

Mohon tunggu...

Lihat Konten Nature Selengkapnya
Lihat Nature Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun