Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 81
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Nondegeneracy (to determine criticality) requires the first Lyapunov coefficient 1\ell_11 (computed from second and third derivatives) to be nonzero. If 1<0\ell_1<01<0 the Hopf is supercritical (stable small amplitude limit cycles born); if 1>0\ell_1>01>0 it is subcritical (unstable cycles and often hysteresis).
We give the standard formula for 1\ell_11 below.

5. Formulae for normal-form coefficients (fold a,ba,ba,b and Hopf 1\ell_11)

(a) Saddle-node coefficients a,ba,ba,b

Right nullvector vvv and left nullvector www normalized so wv=1w^\top v = 1wv=1.
Quadratic form DX2F(Xc)[u,v]D_X^2 F(X_c)[u,v]DX2F(Xc)[u,v] is defined componentwise:
(DX2F(Xc)[u,v])i=j,k2Fixjxk(Xc)ujvk.\big(D_X^2 F(X_c)[u,v]\big)_i = \sum_{j,k} \frac{\partial^2 F_i}{\partial x_j \partial x_k}(X_c)\,u_j v_k.(DX2F(Xc)[u,v])i=j,kxjxk2Fi(Xc)ujvk.

Then
a=12wDX2F(Xc)[v,v],b=wF(Xc),a = \tfrac12\, w^\top D_X^2 F(X_c)[v,v],\qquad b = w^\top F_{\mu}(X_c),a=21wDX2F(Xc)[v,v],b=wF(Xc),
with F=F/EF_{\mu} = \partial F/\partial \mu_EF=F/E.
(These are exactly the coefficients that appear in the reduced scalar normal form y=ay2+b(c)+ \dot y = a y^2 + b (\mu-\mu_c) + \cdotsy=ay2+b(c)+.)

(b) Hopf first Lyapunov coefficient 1\ell_11 (Kuznetsov formula)

Let J=DXF(Xc)J = D_X F(X_c)J=DXF(Xc) have a simple pair of pure imaginary eigenvalues i0\pm i\omega_0i0 with right eigenvector vvv and left eigenvector www normalized as w,v=wv=1\langle w, v\rangle = w^\dagger v = 1w,v=wv=1. Define the multilinear forms BBB and CCC:

B(u,v)=DX2F(Xc)[u,v]B(u,v) \;=\; D_X^2 F(X_c)[u,v]B(u,v)=DX2F(Xc)[u,v] (vector valued bilinear form),
C(u,v,w)=DX3F(Xc)[u,v,w]C(u,v,w) \;=\; D_X^3 F(X_c)[u,v,w]C(u,v,w)=DX3F(Xc)[u,v,w] (vector valued trilinear form).
Then (see Kuznetsov, Elements of Applied Bifurcation Theory, 3.4) the first Lyapunov coefficient is

1=120{w,C(v,v,v)2w,B(v,(J2i0I)1B(v,v))+w,B(v,(J)1B(v,v))}.\boxed{% \ell_1 \;=\; \frac{1}{2\omega_0}\,\Re\Big\{\,\langle w,\, C(v,v,\bar v)\rangle - 2\langle w,\, B\big(v,\, (J-2i\omega_0 I)^{-1} B(v,v)\big)\rangle + \langle w,\, B\big(\bar v,\, (J)^{-1} B(v,\bar v)\big)\rangle \Big\}.}1=201{w,C(v,v,v)2w,B(v,(J2i0I)1B(v,v))+w,B(v,(J)1B(v,v))}.

Here:

v\bar vv is complex conjugate of vvv.
Inverse operators (J2i0I)1(J-2i\omega_0 I)^{-1}(J2i0I)1 and J1J^{-1}J1 act on the right-hand side vectors; these inverses exist under the generic Hopf nonresonance assumptions.
If 1<0\ell_1<01<0 the Hopf is supercritical.
This formula can be expanded componentwise using the explicit second and third derivatives of FFF. For a 3-D system it is straightforward but algebraically lengthy --- using symbolic algebra packages or finite-difference multilinear approximations is common in practice.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun