Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 81
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Usual normal form scaling yields the canonical fold:

x=r+x2,rb(c),xy.\dot x = r + x^2,\qquad r \propto b(\mu-\mu_c),\;x\propto y.x=r+x2,rb(c),xy.

Interpretation: the sign of aba bab tells whether equilibria are created/destroyed for \mu increasing past c\mu_cc. For our problem, computing aaa and bbb (explicitly in terms of partial derivatives) gives the analytic expression for crit()\mu_{\mathrm{crit}}(\Theta)crit() locally.

3. How to compute aaa and bbb concretely

Solve Jcv=0J_c v = 0Jcv=0 for right nullvector vvv.
Solve wJc=0w^\top J_c = 0wJc=0 for left nullvector www, normalize wv=1w^\top v = 1wv=1.
Compute the vector D2F(Xc)[v,v]D^2F(X_c)[v,v]D2F(Xc)[v,v] with components
(D2F(Xc)[v,v])i=j,k=1n2Fixjxk(Xc)vjvk.\big(D^2F(X_c)[v,v]\big)_i \;=\; \sum_{j,k=1}^n \frac{\partial^2 F_i}{\partial x_j\partial x_k}(X_c)\, v_j v_k.(D2F(Xc)[v,v])i=j,k=1nxjxk2Fi(Xc)vjvk.

Then a=12wD2F(Xc)[v,v]a = \tfrac{1}{2}\, w^\top D^2F(X_c)[v,v]a=21wD2F(Xc)[v,v].
Compute F\partial_\mu FF (partial derivative of vector field w.r.t. \mu); evaluate at (Xc,c)(X_c,\mu_c)(Xc,c) and form b=wF(Xc;c)b = w^\top \partial_\mu F(X_c;\mu_c)b=wF(Xc;c).
If aaa and bbb satisfy the inequalities above, you have the fold normal form.

Practical note: For our model the only explicit dependence on \mu is in E\dot EE via the additive E\mu_EE term, so F=eE\partial_\mu F = e_EF=eE unit vector in EEE-direction; thus b=wEb = w_Eb=wE (the EEE-component of the left nullvector), making the transversality test computationally straightforward.

b. Hopf bifurcation --- reduction & normal form

1. Linear condition

Assume at =h\mu=\mu_h=h there is equilibrium X=XhX^*=X_hX=Xh such that:

F(Xh;h)=0F(X_h;\mu_h)=0F(Xh;h)=0.
Jacobian JhJ_hJh has a simple pair of purely imaginary eigenvalues 1,2(h)=i0\lambda_{1,2}(\mu_h)=\pm i\omega_01,2(h)=i0 with 0>0\omega_0>00>0; all other eigenvalues have nonzero real parts. The pair is simple (algebraic multiplicity 1).
2. Transversality & nondegeneracy

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun