Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 81
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

From the model in Section 4.A (notation consistent with that section),

F1(T,E,P)=TSE(E)BL(1T)BPP,F2(T,E,P)=EEE+PPTT,F3(T,E,P)=PP(1PPmax)+ESE(E)TTKK(E,)P.\begin{aligned} F_1(T,E,P) &= \alpha_T S_E(E)\,B_L\,(1-T) - B_P P,\\ F_2(T,E,P) &= \mu_E - \lambda_E E + \phi_P P - \phi_T T,\\ F_3(T,E,P) &= \rho_P P\Big(1-\tfrac{P}{P_{\max}}\Big) + \eta_E S_E(E) - \delta_T T - \kappa_K K(E,\Theta) P. \end{aligned}F1(T,E,P)F2(T,E,P)F3(T,E,P)=TSE(E)BL(1T)BPP,=EEE+PPTT,=PP(1PmaxP)+ESE(E)TTKK(E,)P.

(If your exact expressions for some coefficients differ, replace them symbolically; the structure below is generic.)

Differentiate to obtain the Jacobian entries Jij=Fi/xjJ_{ij} = \partial F_i/\partial x_jJij=Fi/xj evaluated at X=(T,E,P)X^*=(T^*,E^*,P^*)X=(T,E,P).

Calculate the (analytical) partials:

SE(E)S_E(E)SE(E) derivative:
SE(E)=ddEEE+=E1(E+)2.S_E'(E) \;=\; \frac{d}{dE}\frac{E^\kappa}{E^\kappa + \theta^\kappa} \;=\; \frac{\kappa\,\theta^\kappa\,E^{\kappa-1}}{(E^\kappa+\theta^\kappa)^2}.SE(E)=dEdE+E=(E+)2E1.

Entries:
J11=TF1=TSE(E)BL,J12=EF1=TBL(1T)SE(E),J13=PF1=BP,\begin{aligned} J_{11} &= \partial_T F_1 = -\alpha_T\,S_E(E^*)\,B_L,\\[4pt] J_{12} &= \partial_E F_1 = \alpha_T\,B_L\,(1-T^*)\,S_E'(E^*),\\[4pt] J_{13} &= \partial_P F_1 = -B_P, \end{aligned}J11J12J13=TF1=TSE(E)BL,=EF1=TBL(1T)SE(E),=PF1=BP, J21=TF2=T,J22=EF2=E,J23=PF2=P,\begin{aligned} J_{21} &= \partial_T F_2 = -\phi_T,\\[4pt] J_{22} &= \partial_E F_2 = -\lambda_E,\\[4pt] J_{23} &= \partial_P F_2 = \phi_P, \end{aligned}J21J22J23=TF2=T,=EF2=E,=PF2=P, J31=TF3=T,J32=EF3=ESE(E)KPK(E,),J33=PF3=P(12PPmax)KK(E,).\begin{aligned} J_{31} &= \partial_T F_3 = -\delta_T,\\[4pt] J_{32} &= \partial_E F_3 = \eta_E S_E'(E^*) - \kappa_K P^* \, K'(E^*,\Theta),\\[4pt] J_{33} &= \partial_P F_3 = \rho_P\Big(1 - 2\frac{P^*}{P_{\max}}\Big) - \kappa_K K(E^*,\Theta). \end{aligned}J31J32J33=TF3=T,=EF3=ESE(E)KPK(E,),=PF3=P(12PmaxP)KK(E,).

Notes:

If KKK (elite cooptation) does not depend on EEE in your parameterization, then K(E)=0K'(E^*)=0K(E)=0 and J32=ESE(E)J_{32}=\eta_E S_E'(E^*)J32=ESE(E).
All coefficient symbols (e.g. T,E,P,E,T,K,BL,BP\alpha_T,\lambda_E,\rho_P,\eta_E,\delta_T,\kappa_K,B_L,B_PT,E,P,E,T,K,BL,BP) are functions of the leadership vector \Theta via the mappings in Section 2.B--2.C; therefore JJJ is an explicit function of \Theta and XX^*X.
Compactly:

J(X)=(J11J12J13J21J22J23J31J32J33).J(X^*) = \begin{pmatrix} J_{11} & J_{12} & J_{13}\\[4pt] J_{21} & J_{22} & J_{23}\\[4pt] J_{31} & J_{32} & J_{33} \end{pmatrix}.J(X)=J11J21J31J12J22J32J13J23J33.

3. Characteristic polynomial and stability (Routh--Hurwitz)

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun