Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 81
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

The analysis used finite differences for second derivatives; publication-grade symbolic derivatives and numerical continuation (AUTO / MATCONT) are recommended to refine bifurcation curves and produce rigorous continuation branches.
Results are conditional on the chosen coefficient mappings from leadership parameters to model coefficients. Empirical calibration (likelihood / Bayesian fitting) would reduce subjectivity.
The reduced T,E,PT,E,PT,E,P model captures the essential fold mechanism but omits explicit dynamical coupling with HHH (black-horse potential). Section 4 provides full simulations including HHH.
3.A.6 Concluding remarks for the fold analysis

The fold analysis demonstrates that leadership quality, encoded in the seven-dimensional \Theta, systematically modulates the critical economic shock amplitude crit\mu_{\mathrm{crit}}crit required for abrupt social unrest. The four case studies illustrate a clear ordering of resilience (SBY Jokowi Soeharto Prabowo) under the adopted mappings. The extracted normal-form coefficients validate that the transitions are standard saddle-node bifurcations and provide interpretable sensitivity measures for policy: increasing legitimacy and crisis management robustness yields the largest shifts in crit\mu_{\mathrm{crit}}crit, raising the regime's resilience to economic perturbations.

B Hopf normal-form calculations and limit-cycle analysis (augmented model)

3.B.1 Why augment the model?

In the reduced (T,E,P)(T,E,P)(T,E,P) system the numerics showed fold (saddle-node) tipping as the dominant route to unrest; a coarse Hopf search returned no complex-pair crossings. To allow oscillatory protest waves (small-amplitude cycles born at Hopf), we introduce an explicit policy/response lag that closes a negative-feedback loop with delay-like dynamics---well known to generate Hopf when gain and lag exceed damping.

We add a slow state GGG (aggregate policy response), yielding a 4D ODE that preserves our leadership linkages:

T=TS(E)(L+NN+MM)(1T)(T+T(1R))P,E=EdEE+PPTTGG,P=PP(1PPmax)+ES(E)TTc4PGG,G=G+kpPktT.\begin{aligned} \dot T &= \alpha_T\,S(E)\,\big(L+\sigma_N N+\sigma_M M\big)\,(1-T)\;-\;(\beta_T+\gamma_T (1\!-\!R))\,P,\\ \dot E &= \mu_E - d_E E + \phi_P P - \phi_T T \;\;-\; \phi_G G,\\ \dot P &= \rho_P P\Big(1-\tfrac{P}{P_{\max}}\Big) + \eta_E S(E) - \delta_T T - c_4 P \;\;-\; \chi_G G,\\ \dot G &= \frac{-G + k_p P - k_t T}{\tau}. \end{aligned}TEPG=TS(E)(L+NN+MM)(1T)(T+T(1R))P,=EdEE+PPTTGG,=PP(1PmaxP)+ES(E)TTc4PGG,=G+kpPktT.

Here S(E)=EE+S(E)=\dfrac{E^\kappa}{E^\kappa+\theta^\kappa}S(E)=E+E is the same stress activation as before. The leadership parameters =(C,L,M,N,ES,EM,R)\Theta=(C,L,M,N,ES,EM,R)=(C,L,M,N,ES,EM,R) modulate coefficients as previously defined; new couplings obey:

Gain: kpk_p\uparrowkp with M,EMM, EMM,EM; ktk_t\uparrowkt with M,LM, LM,L.
Lag: \tau\uparrow when CC\downarrowC and MM\downarrowM (slower, more inertial state reaction).
Policy impacts: G,G\phi_G,\chi_G\uparrowG,G with LLL and ESESES (legitimate policies help both economy and de-escalation).
Linear Hopf conditions (cubic sub-block)

Linearizing at an equilibrium X=(T,E,P,G)X^*=(T^*,E^*,P^*,G^*)X=(T,E,P,G) gives Jacobian JJJ. Because GGG only couples with (T,E,P)(T,E,P)(T,E,P), the oscillatory onset is governed by a cubic characteristic polynomial on the (E,P,G)(E,P,G)(E,P,G) feedback loop (trust acts as a stabilizing leak and coupling):

3+a12+a2+a3=0,\lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3 =0,3+a12+a2+a3=0,

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun