Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 81
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

a. Compute Ai(E)A_i(E)Ai(E) symbolic expressions from definitions in Section 3 (requires SE(E)S_E(E)SE(E), K(E)K(E)K(E), and mapping of leadership parameters to coefficients).
b. Solve discriminant equation (10): A1(E)24A2(E)A0(E)=0A_1(E)^2 - 4 A_2(E) A_0(E) = 0A1(E)24A2(E)A0(E)=0 for EE^*E in (0,1)(0,1)(0,1). Each real root EE^*E is a candidate fold height.
c. For each candidate EE^*E, compute P=A1(E)/(2A2(E))P^* = -A_1(E^*)/(2 A_2(E^*))P=A1(E)/(2A2(E)) (must be 0\ge00 and Pmax\le P_{\max}Pmax). Then compute TT^*T from (5) and finally compute E\mu_EE via (6). That E\mu_EE is crit()\mu_{\mathrm{crit}}(\Theta)crit() associated with that fold.
d. Check Jacobian at (T,E,P)(T^*,E^*,P^*)(T,E,P): compute JJJ in (11). Verify zero eigenvalue (within tolerance) and check that nullspace has dimension 1 (simple eigenvalue). Compute the nondegeneracy coefficients aaa and bbb as in Section 2.D to ensure classical saddle-node.
e. If symbolic closed forms are desired: compute resultant eliminating PP^*P between (8) and its derivative (9b) to obtain a polynomial in EE^*E alone (this is exactly the discriminant), then solve symbolically if possible (SymPy). Otherwise solve numerically with reliable root solvers and continuation.
8. Additional remarks (interpretation & practicalities)

The reduction to a quadratic (8) is central: it demonstrates why fold bifurcations are generic here --- the protest equation includes a logistic (quadratic) nonlinearity and linear couplings to TTT and EEE, so multiplicity of roots (coexisting low- and high-PPP equilibria) is expected. The leadership parameters enter A1,A0A_1,A_0A1,A0 through KKK, SES_ESE, T\delta_TT, etc., and thereby modulate the discriminant (E)\Delta(E)(E). In particular, increasing legitimacy LLL generally increases BLB_LBL, decreasing the TBP/(TBLSE) \delta_T B_P /(\alpha_T B_L S_E)TBP/(TBLSE) term and thereby shifting the discriminant to favor single-root (more stable) regimes.
When KKK does not depend on EEE (pure leadership control), A1A_1A1 simplifies and the discriminant becomes easier; if KKK depends on EEE (e.g., elite cooptation weakens with economic stress), that coupling can create richer algebraic structure (multiple fold points).
For the full 4D augmented model (including GGG), a similar elimination procedure can be attempted but will produce cubic or quartic algebraic relations requiring higher-order resultants. Practically, use continuation tools to track folds and Hopf curves in parameter space.

B Jacobian derivation and eigenvalue conditions

1. Notation and setup

We consider the reduced dynamical system (restating for convenience)

T=F1(T,E,P;,E),E=F2(T,E,P;,E),P=F3(T,E,P;,E),\begin{aligned} \dot T &= F_1(T,E,P;\Theta,\mu_E),\\ \dot E &= F_2(T,E,P;\Theta,\mu_E),\\ \dot P &= F_3(T,E,P;\Theta,\mu_E), \end{aligned}TEP=F1(T,E,P;,E),=F2(T,E,P;,E),=F3(T,E,P;,E),

where \Theta denotes the vector of seven leadership parameters (Consensus CCC, Legitimacy LLL, Crisis management MMM, Narrative NNN, Economic stability ESESES, Elite coordination EMEMEM, Repression vs consensus RRR) and E\mu_EE is the exogenous economic stress (control parameter). Let X=(T,E,P)X=(T,E,P)^\topX=(T,E,P) and write F(X;,E)F(X;\Theta,\mu_E)F(X;,E) for the vector field.

An equilibrium satisfies F(X;,E)=0F(X^*;\Theta,\mu_E)=0F(X;,E)=0. Local linear stability is governed by the Jacobian matrix evaluated at the equilibrium:

J(X;,E)=DXF(X;,E)(the 33 matrix of partial derivatives).J(X^*;\Theta,\mu_E) \;=\; D_X F(X^*;\Theta,\mu_E) \qquad\text{(the 33 matrix of partial derivatives).}J(X;,E)=DXF(X;,E)(the 33 matrix of partial derivatives).

Below I give explicit expressions for JJJ in terms of the model functions used in Section 2/4.A, then derive eigenvalue conditions and the bifurcation criteria.

2. Jacobian --- explicit partial derivatives

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun