\delta_T &= \delta_0 + \delta_L\, L + \delta_N\, N,\\
\kappa_K Â &= \kappa_0 + \kappa_{E}\, E_c + \kappa_C\, C - \kappa_R\,(1-R),\\
\lambda_E &= \lambda_0 + \lambda_G\, G + \lambda_M\, M,\\
\alpha_T &= \alpha_0\,(L + \sigma_N N + \sigma_M M),\\
\gamma_T &= \gamma_0\,(1-R),\\
\lambda_H &= \lambda_{H0}\, E_c.
\end{aligned}
These mappings ensure:
Higher generally increase stabilizing coefficients (trust recovery, economic damping, cooptation efficiency), thereby shifting the system toward resilience.
Lower (higher repression) increases short-term suppression but increases (backfire) which erodes faster given protests.
6. Boundedness and invariance