Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Leadership Parameters and Bifurcation of Political Unrest: a Mathematical Formalism with Cases Study

16 September 2025   14:54 Diperbarui: 16 September 2025   14:54 81
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

From T=TSE(E)BL(1T)BPP\dot T = \alpha_T S_E(E) B_L (1-T) - B_P PT=TSE(E)BL(1T)BPP:
TT=TSE(E)BL,ET=TBL(1T)SE(E),PT=BP.\begin{aligned} \partial_T \dot T &= -\alpha_T S_E(E^*) B_L,\\[4pt] \partial_E \dot T &= \alpha_T B_L (1-T^*) S_E'(E^*),\\[4pt] \partial_P \dot T &= -B_P. \end{aligned}TTETPT=TSE(E)BL,=TBL(1T)SE(E),=BP.

From E=EEE+PPTT\dot E = \mu_E - \lambda_E E + \phi_P P - \phi_T TE=EEE+PPTT:
TE=T,EE=E,PE=P.\begin{aligned} \partial_T \dot E &= -\phi_T,\\[4pt] \partial_E \dot E &= -\lambda_E,\\[4pt] \partial_P \dot E &= \phi_P. \end{aligned}TEEEPE=T,=E,=P.

From P=PP(1P/Pmax)+ESE(E)TTKK(E)P\dot P = \rho_P P(1-P/P_{\max}) + \eta_E S_E(E) - \delta_T T - \kappa_K K(E) PP=PP(1P/Pmax)+ESE(E)TTKK(E)P:
Compute derivative carefully: logistic term derivative: P[PP(1P/Pmax)]=P(12P/Pmax)\partial_P [\rho_P P(1-P/P_{\max})] = \rho_P(1 - 2P/P_{\max})P[PP(1P/Pmax)]=P(12P/Pmax).

Also P[KK(E)P]=KK(E)\partial_P[-\kappa_K K(E) P] = -\kappa_K K(E)P[KK(E)P]=KK(E) (here we treated K\kappa_KK constant; if K\kappa_KK depends on P via K(E) only E dependent so ok). And E[ESE(E)KK(E)P]=ESE(E)KPK(E)\partial_E [\eta_E S_E(E) - \kappa_K K(E) P] = \eta_E S_E'(E) - \kappa_K P \,K'(E)E[ESE(E)KK(E)P]=ESE(E)KPK(E).

Hence

TP=T,EP=ESE(E)KPK(E),PP=P(12PPmax)KK(E).\begin{aligned} \partial_T \dot P &= -\delta_T,\\[4pt] \partial_E \dot P &= \eta_E S_E'(E^*) \;-\; \kappa_K P^* K'(E^*),\\[4pt] \partial_P \dot P &= \rho_P\Big(1 - \dfrac{2P^*}{P_{\max}}\Big) \;-\; \kappa_K K(E^*). \end{aligned}TPEPPP=T,=ESE(E)KPK(E),=P(1Pmax2P)KK(E).

Collecting all:

J(X)=(TSE(E)BLTBL(1T)SE(E)BPTEPTESE(E)KPK(E)P(12P/Pmax)KK(E)).(11)\boxed{% J(X^*) = \begin{pmatrix} -\alpha_T S_E(E^*) B_L & \alpha_T B_L (1-T^*) S_E'(E^*) & -B_P\\[6pt] -\phi_T & -\lambda_E & \phi_P\\[6pt] -\delta_T & \eta_E S_E'(E^*) - \kappa_K P^* K'(E^*) & \rho_P(1 - 2P^*/P_{\max}) - \kappa_K K(E^*) \end{pmatrix}. } \tag{11}J(X)=TSE(E)BLTTTBL(1T)SE(E)EESE(E)KPK(E)BPPP(12P/Pmax)KK(E).(11)

Here SE(E)=dSEdE=E1/(E+)2S_E'(E) = \dfrac{dS_E}{dE} = \kappa\,\theta^\kappa\,E^{\kappa-1}/(E^\kappa+\theta^\kappa)^2SE(E)=dEdSE=E1/(E+)2 (or the equivalent derivative of the Hill function used). K(E)K'(E)K(E) is derivative of the cooptation function w.r.t. EEE (zero for our original KKK that depends on leadership parameters only --- if KKK depends only on \Theta and not on EEE, then K(E)=0K'(E)=0K(E)=0, simplifying the expression).

6. Bifurcation conditions and nondegeneracy

Fold (saddle-node): algebraically encoded by (9a--9b) (double root in PPP for some EE^*E). Equivalently, at (Xc,c)(X_c,\mu_c)(Xc,c) the Jacobian has a simple zero eigenvalue: detJ(Xc)=0\det J(X_c)=0detJ(Xc)=0 and rankJJJ=2. Nondegeneracy requires the quadratic nonlinearity coefficient a=12wD2F[v,v]0a = \tfrac12 w^\top D^2F[v,v] \neq 0a=21wD2F[v,v]=0 (see Section 2.D) and b=wF0b = w^\top \partial_{\mu}F \neq 0b=wF=0. For our model F=(0,1,0)\partial_{\mu}F = (0,1,0)^\topF=(0,1,0), so b=w2b= w_2b=w2 (the second component of the left nullvector).
Hopf (if it appears): occurs when the Jacobian has a simple complex conjugate pair crossing the imaginary axis. Routh--Hurwitz criteria on the cubic characteristic polynomial (or direct eigenvalue computation) determine the Hopf locus. The first Lyapunov coefficient 1\ell_11 computed from multilinear forms determines criticality.
7. Recipe to compute crit()\mu_{\mathrm{crit}}(\Theta)crit() analytically / numerically

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun