Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Relational Zone Economics: Toward a Complex Adaptive Theory of Strategic Human Interaction in Economics System

25 Juni 2025   21:07 Diperbarui: 25 Juni 2025   21:07 335
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

1. Limitations of Traditional Economic AI Models

Most current AI-based agents in economic systems are trained on frameworks such as:

Reinforcement Learning (RL) for maximizing cumulative rewards.
Game-theoretic modeling using Nash or Tit-for-Tat heuristics.
Predictive analytics based on past data without context-awareness of changing relational climates.
While these models are powerful for quantifiable and static payoff environments, they often fail in:

Navigating relational ambiguity (e.g., shifting alliances, unspoken intentions).
Interpreting long-term trustworthiness or betrayal in multi-agent dynamics.
Managing multi-layered interest conflicts that evolve across temporal zones.
2. Embedding Relational Zone Dynamics into AI Agents

Relational AI agents powered by RZE go beyond conventional design by modeling zone-based intentions, memory, and role transitions. Such agents are engineered to:

Infer the current relational zone of their counterpart (e.g., Green = cooperative, Yellow = ambiguous, Red = conflictual).
Adapt strategy not just to maximize short-term reward but to maintain or shift to desired zones (e.g., from Yellow to Green, or avoiding descent into Black).
Retain memory of relational episodes, including violations or moments of clarity, and adjust expectations dynamically.
This makes the agents:

More human-aligned in negotiations, diplomacy, or investment partnerships.
Capable of long-term strategic behavior, even at short-term cost (mimicking "Jernih" strategies).
Valuable in ambiguous domains such as international aid, startup mentorship, or community platform governance.
3. Applications in Simulated and Real Economic Environments

a. Digital Markets and Negotiation Platforms

In AI-mediated bargaining, RZE-based agents can flag and de-escalate emergent Red/Black zones, improving mutual outcomes over time.
In marketplaces (e.g., eBay, B2B platforms), agents can tailor trust-building offers based on perceived relational zones.
b. AI in Venture Capital and Startup Ecosystems

RZE-informed bots could assist VCs in evaluating not only financial metrics but also relational stability of founding teams.
AI mentors could simulate long-term relational scenarios based on zone dynamics for startup incubation.
c. Decentralized Governance (DAO/Blockchain)

RZE agents can participate in or moderate decentralized autonomous organizations, navigating beyond "vote count" to relational legitimacy, detecting when the zone of collective trust is fraying and suggesting mediating actions.
d. AI for Social Impact and NGO Networks

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun