Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Relational Zone Economics: Toward a Complex Adaptive Theory of Strategic Human Interaction in Economics System

25 Juni 2025   21:07 Diperbarui: 25 Juni 2025   21:07 335
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

While analytical solutions offer clarity under constrained assumptions, the complex adaptive and relational nature of the RZE (Relational Zone Economics) framework necessitates agent-based simulation to explore emergent patterns, nonlinear feedback, and context-dependent adaptation over time. Long-term investment behaviors --- such as infrastructure development, venture capital ecosystems, or sovereign fund deployment --- provide a fertile ground for testing relational sensitivity, path-dependence, and zone-induced strategic shifts.

2. Simulation Design

a. Agent Types:

Investor agents: Possess different risk tolerances, time horizons, and memory depths.
Receiver agents (e.g., startups, governments, communities): Vary in transparency, intent (modeled as latent variables), and responsiveness.
Context agents: Institutional or macro agents (e.g., regulatory bodies) shaping relational climates.
b. Initial Conditions:

Agents begin in varied zones: White (neutral), Green (trust-based), Yellow (ambiguous), etc.
Each agent holds an interest vector:
 Ii={is,im,il}\vec{I}_i = \{i_s, i_m, i_l\}
 for short-term, medium-term, and long-term priorities.
c. Environment Setup:

Simulations run over T=200T = 200 rounds (interpretable as months or quarters).
Investments yield zone-sensitive returns, incorporating memory of previous zone transitions, betrayal costs, and collaborative gains.
3. Behavioral Rules

Each round, investor agents:

Evaluate expected payoff, discounted by perceived zone trust Zij(t)Z_{ij}(t),

Update relational valuation Rij(t)R_{ij}(t) based on observed behavior of the counterpart,
Allocate capital accordingly (full investment, partial, defer, or divest),
Recalculate their interest vector weights based on outcomes (dynamic learning).
Receiver agents:

Can choose to signal transparency, withhold, or manipulate perceptions (entering Yellow or Black zones),
Adjust behavior adaptively to maximize long-term investment continuity.
4. Key Metrics Captured

Zone persistence: Proportion of time dyads spend in each zone.
Investment volatility: Changes in capital flow due to relational disruptions.
Trust-to-return elasticity: How relational gains/losses influence net investment return.
Emergent cooperation clusters: Network patterns where mutual Green or Jernih zones stabilize.
5. Selected Findings (Illustrative)

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun