Fundamentals forces Interact in trt_r, but are regulated and synchronized by the absolute time resonance R(Ta)\mathcal{R}(T_a).
The interaction of the forces Iij\mathcal{I}_{ij} contains a direct component between the forces and the influence of the absolute time resonance field.
The evolution of the fundamental forces is described by the derivatives with respect to absolute time TaT_a, not just relative time.
1. Initial Equation (Dynamic Model of Force Interaction)
dGidTa=j=14ijIij(Pr(Ta,))\frac{d\mathcal{G}_i}{dT_a} = \sum_{j=1}^4 \gamma_{ij} \cdot \mathcal{I}_{ij}(P_r(T_a, \vec{\theta}))
With the interaction model of forces:
Iij(tr)=ijGi(tr)Gj(tr)+ijR(Ta)\mathcal{I}_{ij}(t_r) = \alpha_{ij} \cdot \mathcal{G}_i(t_r) \cdot \mathcal{G}_t{G}_t(\c}{\be_dot \mathcal{R}(T_a)
Dan waktu relatif tr=Pr(Ta,)t_r = P_r(T_a, \vec{\theta}).
2. Substitution and Simplification
Since tr=Pr(Ta,)t_r = P_r(T_a, \vec{\theta}), then Gi(tr)=Gi(Pr(Ta,))=G~i(Ta)\mathcal{G}_i(t_r) = \mathcal{Gta(})Ti_c_a(\,P_r) \widetilde{\mathcal{G}}_i(T_a). Then we change all functions to be explicit against TaT_a:
Iij(Ta)=ijG~i(Ta)G~j(Ta)+ijR(Ta)\mathcal{I}_{ij}(T_a) = \alpha_{ij} \cdot \widetilde{\mathcal{G}}_i(T_a) \jtil.T{G}_math_math \beta_{ij} \cdot \mathcal{R}(T_a)