R(tr,(tr))=cos((trt0)((tr)))R(t_r, \psi(t_r)) = \cos\big( \omega (t_r - t_0) \cdot \phi(\psi(t_r)) \big)R(tr,(tr))=cos((trt0)((tr)))
which indicates that changes in the state of consciousness dynamically shift the frequency and phase of resonance.
6.b.5 Dynamic Model of Consciousness \psi
Suppose we model consciousness \psi with the general differential equation:
ddtr=F(,tr)\frac{d \psi}{d t_r} = F(\psi, t_r)dtrd=F(,tr)
where FFF represents the process of adaptation and feedback from the physical and social environment.
With an integrated system of differential equations:
{d2Rdtr2+2()2R=0ddtr=F(,tr)\begin{cases} \frac{d^2 R}{d t_r^2} + \omega^2 \phi(\psi)^2 R = 0 \\ \frac{d \psi}{d t_r} = F(\psi, t_r) \end{cases}{dtr2d2R+2()2R=0dtrd=F(,tr)
6.b.6 Relationship with Empirical Measurement
High resonance: R1R \to 1R1 ketika (trt0)()2k,kZ\omega (t_r - t_0) \phi(\psi) \approx 2k\pi, k \in \mathbb{Z}(trt0)()2k,kZ.
Low resonance: R0R \to 0R0 or negative when not in sync.