Simulation System Components
Main Parameters: Absolute time remains constant: t0=0t_0 = 0 (reference) Relative time span: tr[0,T]t_r \in [0, T], e.g. T=100T=100 Fundamental resonant frequency: =0.1\omega = 0.1 rad/s The modulation function of consciousness ()\phi(\psi), for example: Â ()=1+(tr)\phi(\psi) = 1 + \alpha \cdot \psi(t_r)
with \alpha as the coefficient of influence of consciousness
Dynamic Model of Consciousness: The consciousness (tr)\psi(t_r) is modeled by a simple differential equation, e.g.: Â ddtr=+sin(tr)\frac{d\psi}{dt_r} = -\beta \psi + \gamma \sin(\kappa t_r) Â with \beta as the damping rate, \gamma the amplitude of the external stimulus, and \kappa the stimulus frequency.
Resonance Function: R(tr)=cos((trt0)((tr)))R(t_r) = \cos \big( \omega (t_r - t_0) \cdot \phi(\psi(t_r)) \big)
Simulation Steps
Initialization: Set the parameter values: ,,,,,T\omega, \alpha, \beta, \gamma, \kappa, T Initialize the initial value (0)=0\psi(0) = \psi_0
Numerical Iteration: Use a numerical method (e.g. Euler or 4th order Runge-Kutta) to solve for ddtr\frac{d\psi}{dt_r} at each time trt_r. Calculate ((tr))\phi(\psi(t_r)) and then the resonance value R(tr)R(t_r).
Output: Plot (tr)\psi(t_r) (consciousness) Plot R(tr)R(t_r) (time resonance) Observe the synchronization period and fragmentation period (when R(tr)R(t_r) is low or oscillates irregularly)
Visual Interpretation
High sync:R(tr)1R(t_r) \approx 1, signifying relative and absolute time alignment, a condition of multidimensional integration.
Low sync:R(tr)R(t_r) approaches 0 or is negative, indicating fragmentation and a crisis of meaning.