2. Absolute Time as a Resonance Parameter TaT_a
Suppose there is an absolute time parameter TaRT_a \in \mathbb{R} (real line) which is ontological and universal, as time substrate where all relative time frames trt_r are projection functions of TaT_a.
We write:
tr=Pr(Ta,)t_r = P_r(T_a, \vec{\theta})
where PrP_r is the relative time projection rr which depends on TaT_a and the parameters \vec{\theta} (e.g. consciousness, environmental conditions, etc.).
3. Absolute Resonance Operator R(Ta)\mathcal{R}(T_a)
Define the absolute time resonance operator R(Ta)\mathcal{R}(T_a) which governs the synchronization and cohesion between the fundamental forces in the absolute time frame:
R(Ta):{G1,G2,G3,G4}{G1,G2,G3,G4}\mathcal{R}(T_a) : \{\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \mathcal{G}_4\} \to \{\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_4\} \mathcal{G}_3', \mathcal{G}_4'\}
where Gi\mathcal{G}_i' is the force that has been "tuned" by absolute time resonance.
4. Model of Force Interaction with Absolute Time Resonance
The interaction of the fundamental forces Iij\mathcal{I}_{ij} between the ii and jj forces at relative time trt_r can be modeled as a function of the absolute time resonance: