Iij(tr)=fij(Gi(tr),Gj(tr),R(Ta))\mathcal{I}_{ij}(t_r) = f_{ij}\big(\mathcal{G}_i(t_r), \mathcal{G}_j(t_r), \mathcal{R}(T_a)\big
where fijf_{ij} is an interaction function that depends on the force values at relative time and the absolute time resonance.
For simple linear shapes:
Iij(tr)=ijGi(tr)Gj(tr)+ijR(Ta)\mathcal{I}_{ij}(t_r) = \alpha_{ij} \cdot \mathcal{G}_i(t_r) \cdot \mathcal{G}_t{G}_t(\c}{\be_dot \mathcal{R}(T_a)
with ij,ijR\alpha_{ij}, \beta_{ij} \in \mathbb{R} the interaction weights.
5. Dynamic Evolution of Force in Absolute Time
The dynamic behavior of fundamental forces is affected by absolute time through the differential equation:
dGidTa=j=14ijIij(Pr(Ta,))\frac{d\mathcal{G}_i}{dT_a} = \sum_{j=1}^4 \gamma_{ij} \cdot \mathcal{I}_{ij}(P_r(T_a, \vec{\theta}))
where ij\gamma_{ij} are the interaction coefficients that determine how strongly the forces influence each other in absolute time resonance.
Summary:
Relative time trt_r is a projection of the absolute time TaT_a.