Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Adaptive Relational Zoning: a CAS Framework for Modelling Strategic Social Interaction

13 Juni 2025   13:09 Diperbarui: 13 Juni 2025   19:29 371
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Relational Update Function:
 After each interaction, agents recompute R_{ij}(t+1) using updated values of V_k, weighted by w_k, and consider adaptive decay or reinforcement over time.
Zone Reclassification:
 Based on the updated R_{ij}(t+1), the dyadic relation is reclassified into one of the six zones. This classification influences subsequent behavior (e.g., more cooperation in Green, more evasion in Red).
Stochastic Noise and Ambiguity Injection:
 Realistic uncertainty is introduced through stochastic variations in perception, emotional interpretation, or strategic misalignment.

4. Experimental Scenarios

Simulations can test a wide range of hypotheses. Examples include:

Trust Network Stability:
 What proportion of relationships remain in the Green or White zones after X iterations under various initial trust distributions?
Resilience under Betrayal Shock:
 How does a network react when a key agent (e.g., a central node) defects or betrays trust?
Strategic Manipulation vs. Collaboration:
 Do agents adopting flexible, mixed-zone tactics outperform rigidly cooperative or defensive agents in long-term network utility?
Emergence of Social Subzones or Factions:
 Observe how agent clusters form based on shared history and zone alignment, and whether polarization (e.g., sustained Red--Black bifurcation) can emerge.

5. Metrics and Outputs for Evaluation

Simulation runs are analyzed using both quantitative and qualitative indicators:

Zone Distribution Entropy: Measures heterogeneity and order in the system.
Relational Volatility Index (RVI): Captures rate of change in zone status per dyad per unit time.
Strategic Efficiency Ratio: Compares utility outcomes of different agent strategy profiles (cooperative, manipulative, evasive, forgiving).
Stability of Clusters: Tracks persistence of subnetwork formations and their relational composition.

6. Implications of Simulation Results

Simulation findings offer parameter sensitivity analyses, revealing which w_k or C values most influence system dynamics.
Validate or revise zone thresholds, especially under extreme or noisy conditions.
Guide the design of AI agents in complex environments (e.g., social robotics, adaptive mediators), allowing real-time relational recalibration.
Support translation of theory into policy simulations (e.g., conflict negotiation tools, strategic HR planning, diplomatic advisory systems).

In sum, computational agent-based simulations provide a synthetic laboratory where the Six-Zone Relational Model can be stress-tested, falsified, optimized, and contextualized---paving the way for both theoretical refinement and real-world deployment.

C. Real-life Application Testing (e.g., in HR, coaching, trauma-informed world)

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun