Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Adaptive Relational Zoning: a CAS Framework for Modelling Strategic Social Interaction

13 Juni 2025   13:09 Diperbarui: 13 Juni 2025   19:29 371
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

The Six-Zone model enables a more granular, temporal, and contextual reading of interaction patterns:

White to Black Zones offer a dynamic spectrum of affective and trust-based states rather than binary relational categories.
Relational scoring functions (R_{ij}(t) = w_k * V_{k,ij}(t) + C) provide a mathematically tractable foundation for modeling trust-distrust dynamics over time.
The concept of zone-based feedback allows AI to recognize shifts in user affect or intention and adjust its communicative stance accordingly (e.g., empathetic withdrawal, tactful confrontation, neutral observation).

2. Empathic and Tactical Responsiveness

AI systems embedded in healthcare, education, or customer service contexts must increasingly perform not only task execution, but emotionally intelligent maneuvering. The Six-Zone framework provides:

A relational state map for calibrating AI responses in emotionally charged situations (e.g., de-escalation in Red Zones, transparency in Green Zones).
Guidelines for tactical withdrawal or re-engagement when the user enters Yellow Zones, signaling ambivalence or relational stress.
A framework for explainable adaptation, where the AI can justify shifts in tone, boundary-setting, or referral to human agents based on a recognizable relational logic.
This enhances not only functionality but user trust, as behavior becomes more interpretable, nuanced, and responsive.

3. Avoiding Manipulative or Misaligned Interaction

One of the most urgent ethical challenges in AI-human systems is avoiding unintended manipulation, especially when AI leverages large datasets to infer user vulnerability or preference. Without a relational ethics framework, systems risk engaging in:

Hyper-personalized nudging that veers into coercion.
Emotion simulation that creates false intimacy.
Behavior shaping without consent or transparency.
By embedding the Six-Zone model's principles---particularly strategic reversibility, relational transparency, and ethical reciprocity---into design, developers can:

Flag emergent asymmetries (e.g., user dependence, emotional exploitation).
Build zone-aware protocols (e.g., auto-escalation to human agents when Red or Black thresholds are reached).
Develop relational audit trails to track and explain AI strategy shifts.

4. Future Directions: Zone-Sensitive AI Architectures

To operationalize the Six-Zone model in AI design, several architectural innovations are required:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun