Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 68
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

cl2(CH2(X)Q)=TX.\operatorname{cl}_2\big(\mathrm{CH}^2(X)\otimes\mathbb Q\big) \;=\; T_X.cl2(CH2(X)Q)=TX.

Empirically and by standard lattice counts in the =20\rho=20=20 case, one has

dimQAdiv=400<404=dimQTX,\dim_{\mathbb Q} A_{\mathrm{div}} = 400 < 404 = \dim_{\mathbb Q} T_X,dimQAdiv=400<404=dimQTX,

so that AdivA_{\mathrm{div}}Adiv is a proper subspace of the full algebraic image cl2(CH2(X)Q)\operatorname{cl}_2(\mathrm{CH}^2(X)\otimes\mathbb Q)cl2(CH2(X)Q) if the Hodge Conjecture holds, or else a proper subspace of TXT_XTX if HC fails. At the level of CAS-6 this quantifies the system deficit: four topological configurations lack the straightforward algebraic realization afforded by products of divisors.

2. Localization of the defect in CAS-6 coordinates

Using the decomposition

H2(Y,Q)=NS(Y)QT(Y),H^2(Y,\mathbb Q)=\operatorname{NS}(Y)\otimes\mathbb Q \oplus T(Y),H2(Y,Q)=NS(Y)QT(Y),

we have the induced decomposition on H4(X,Q)H^4(X,\mathbb Q)H4(X,Q) (restricting to (2,2)(2,2)(2,2)-type):

TX=(NSNS)(NSTTNS)(TT)(extreme H0H4+H4H0).T_X \;=\; \Big(\operatorname{NS}\otimes\operatorname{NS}\Big)\;\oplus\;\Big(\operatorname{NS}\otimes T \oplus T\otimes\operatorname{NS}\Big)\;\oplus\;\Big(T\otimes T\Big)\;\oplus\;(\text{extreme } H^0\otimes H^4 + H^4\otimes H^0).TX=(NSNS)(NSTTNS)(TT)(extreme H0H4+H4H0).

The subspace AdivA_{\mathrm{div}}Adiv is contained in the first summand NSNS\operatorname{NS}\otimes\operatorname{NS}NSNS (dimension 400400400 when =20\rho=20=20), while the residue \Delta is exactly the TTT\otimes TTT block (dimension 444). Thus the missing nodes are localized to the block TTT\otimes TTT: they are pure transcendental tensors whose algebraicity (or lack thereof) determines closure.

From the CAS-6 standpoint: the topology layer (L,C)(L,C)(L,C) includes configurations indexed by the full set of Knneth factors; the algebraic weights (W)(W)(W) generated by divisor-products cover only the NSNS block but leave the TT block unweighted. The "probability" PPP of an a priori random topological configuration being algebraic is therefore strictly less than one and equals 400/404400/404400/404 in the maximal case (heuristically).

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun