Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 68
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

or more canonically using the Mukai vector v(E)=ch(E)td(Y)v(\mathcal E)=\operatorname{ch}(\mathcal E)\sqrt{\mathrm{td}(Y)}v(E)=ch(E)td(Y) and the Mukai pairing. For K3 surfaces many simplifications occur: td(Y)=1+2\mathrm{td}(Y)=1+2\omegatd(Y)=1+2 etc., and one works naturally with the Mukai lattice H~(Y,Z)\widetilde H(Y,\mathbb Z)H(Y,Z).

Crucially, composing a FM kernel with its transpose/adjoint gives an algebraic cycle on the self-product. If PDb(YM)\mathcal P\in D^b(Y\times M)PDb(YM) and QDb(MY)\mathcal Q\in D^b(M\times Y)QDb(MY) is its quasi-inverse kernel, then the kernel

K=QPDb(YY)\mathcal K \;=\; \mathcal Q \star \mathcal P \in D^b(Y\times Y)K=QPDb(YY)

defines a correspondence whose cycle class cl(K)H(YY)\operatorname{cl}(\mathcal K)\in H^*(Y\times Y)cl(K)H(YY) has an explicit expression in terms of ch(P),ch(Q)\operatorname{ch}(\mathcal P),\operatorname{ch}(\mathcal Q)ch(P),ch(Q) and push--pull operations. The induced cohomological endomorphism K:H(Y)H(Y)\Phi_{\mathcal K}:H^\ast(Y)\to H^\ast(Y)K:H(Y)H(Y) is precisely the composition QHPH\Phi_{\mathcal Q}^H\circ\Phi_{\mathcal P}^HQHPH, and its restriction to H2(Y)H^2(Y)H2(Y) (or to the transcendental lattice T(Y)T(Y)T(Y)) is the quantity of interest for filling TTT\otimes TTT.

When P\Phi_{\mathcal P}P is a derived equivalence between YYY and itself (an autoequivalence), K\mathcal KK is simply the class of the autoequivalence's kernel sitting in Db(YY)D^b(Y\times Y)Db(YY) and its cohomological class is an honest algebraic cycle (under suitable conditions), providing direct candidate correspondences.

2. Mapping FM/Derived constructions to CAS-6 components

Interpret FM/data in CAS-6 terms:

Interaction Level LLL: FM transforms are naturally higher-order interactions because they are not simply products of divisors; they encode how entire sheaves (or families thereof) interact across factors. For p=2p=2p=2 on YYY\times YYY they produce codimension-2 correspondences.
Interaction Configuration CCC: the kernel P\mathcal PP encodes a specific configuration of how points/sheaves on one factor pair with subschemes on the other; the moduli space MMM parameterizes these configurations.
Interaction Weights WWW: the cohomological transform PH\Phi_{\mathcal P}^HPH yields rational linear combinations (weights) on cohomology: the entries of the induced matrices on a chosen basis are the algebraic weights.
Interaction Probabilities PPP: the dimension and image of PH\Phi_{\mathcal P}^HPH (and of compositions) determine the likelihood that FM-built correspondences reach the target Hodge summands; numerically this is rank / required dim.
Interaction Stability SSS: FM correspondences coming from universal families or derived equivalences are often deformation-stable (e.g. they vary in families or persist across derived equivalent varieties), giving high SSS.
Interaction Output OOO: the geometric output is the algebraic cycle in YYY\times YYY represented by the composed FM kernel --- the candidate that may occupy a component of TTT\otimes TTT.
Thus FM/kernels are prototypical interaction motifs in CAS-6 that can bridge topology and geometry via algebraic weights computable from characteristic classes.

3. Concrete computational recipe (how to test FM candidates numerically/algebraically)

Below is an explicit, implementable pipeline for integrating FM correspondences into the CAS-6 diagnostic tests (suitable for symbolic/numeric computation in Sage/Python/Magma).

Inputs: a K3 surface YYY; a moduli space MMM of stable sheaves on YYY for which a universal family PDb(YM)\mathcal P\in D^b(Y\times M)PDb(YM) exists (or an explicit autoequivalence kernel on YYY\times YYY); explicit bases for H2(Y)H^2(Y)H2(Y) with an NS/T decomposition.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun