Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 68
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

H2(Y,Q)NS(Y)QT(Y),H^2(Y,\mathbb Q) \;\cong\; \operatorname{NS}(Y)\otimes\mathbb Q \;\oplus\; T(Y),H2(Y,Q)NS(Y)QT(Y),

where NS(Y)\operatorname{NS}(Y)NS(Y) denotes the Nron--Severi group (the algebraic classes of codimension 111) and T(Y)T(Y)T(Y) denotes the transcendental lattice, the orthogonal complement of NS(Y)\operatorname{NS}(Y)NS(Y) inside H2(Y,Q)H^2(Y,\mathbb Q)H2(Y,Q). Set

:=rankNS(Y)(120).\rho \;:=\; \operatorname{rank}\operatorname{NS}(Y) \qquad (1\le\rho\le 20).:=rankNS(Y)(120).

Then dimQNS(Y)Q=\dim_{\mathbb Q}\operatorname{NS}(Y)\otimes\mathbb Q = \rhodimQNS(Y)Q= and

dimQT(Y)=22.\dim_{\mathbb Q} T(Y) \;=\; 22-\rho.dimQT(Y)=22.

4. Contribution of algebraic products and the maximal-algebraic case

A natural algebraic subspace of H2,2(X)H^{2,2}(X)H2,2(X) is provided by the image of the external product of divisor classes:

Im(cl1(CH1(Y)Q)cl1(CH1(Y)Q))H2,2(X).\operatorname{Im}\big( \operatorname{cl}_1(\mathrm{CH}^1(Y)\otimes\mathbb Q)\otimes \operatorname{cl}_1(\mathrm{CH}^1(Y)\otimes\mathbb Q)\big) \;\subseteq\; H^{2,2}(X).Im(cl1(CH1(Y)Q)cl1(CH1(Y)Q))H2,2(X).

Under the decomposition H2(Y,Q)=NS(Y)QT(Y)H^2(Y,\mathbb Q)=\operatorname{NS}(Y)\otimes\mathbb Q\oplus T(Y)H2(Y,Q)=NS(Y)QT(Y), the subspace generated by products of algebraic divisor classes is naturally identified with

NS(Y)QNS(Y)Q,\operatorname{NS}(Y)\otimes\mathbb Q \;\otimes\; \operatorname{NS}(Y)\otimes\mathbb Q,NS(Y)QNS(Y)Q,

whose dimension is 2\rho^22 over Q\mathbb QQ.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun