Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 68
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Below I present a careful, formal discussion of the four families of "nave" candidate correspondences we tried as potential algebraic realizations of the T(Y)T(Y)T(Y)\otimes T(Y)T(Y)T(Y) summand in H2,2(YY)H^{2,2}(Y\times Y)H2,2(YY). For each candidate I: (i) give a precise geometric definition, (ii) describe its induced action on cohomology (how it projects to Knneth summands), (iii) explain why --- in the simple linear model or in generic geometric situations --- it may fail to generate the required transcendental components, and (iv) indicate what refinement or stronger construction would be needed to make it viable.

1. The diagonal YY\Delta\subset Y\times YYY

Definition.
={(y,y)YY}\displaystyle \Delta=\{(y,y)\in Y\times Y\}={(y,y)YY}. It is a smooth codimension--2 algebraic cycle; its cycle class []H4(YY,Q)[\Delta]\in H^4(Y\times Y,\mathbb Q)[]H4(YY,Q) is canonical.

Induced map on cohomology.
Let p1,p2p_1,p_2p1,p2 be the projections. For a correspondence ZYYZ\subset Y\times YZYY with class [Z][Z][Z], the standard induced map on H2(Y)H^2(Y)H2(Y) is

Z:H2(Y)p1H2(YY)[Z]H6(YY)p2H2(Y).\Phi_Z\;:\; H^2(Y)\xrightarrow{\;p_1^*\;} H^2(Y\times Y)\xrightarrow{\;\cup\,[Z]\;} H^6(Y\times Y)\xrightarrow{\;p_{2*}\;} H^2(Y).Z:H2(Y)p1H2(YY)[Z]H6(YY)p2H2(Y).

For the diagonal Z=Z=\DeltaZ=, =IdH2(Y)\Phi_\Delta=\mathrm{Id}_{H^2(Y)}=IdH2(Y) (the push--pull along the diagonal is the identity). Equivalently, under the canonical identification H4(YY)H2(Y)H2(Y)...H^4(Y\times Y)\cong H^2(Y)\otimes H^2(Y)\oplus\dotsH4(YY)H2(Y)H2(Y)... the diagonal class decomposes as

cl()=ieiei+(terms in H0H4 and H4H0),\operatorname{cl}(\Delta)\;=\;\sum_{i} e_i\otimes e_i \;+\; \text{(terms in } H^0\otimes H^4 \text{ and } H^4\otimes H^0),cl()=ieiei+(terms in H0H4 and H4H0),

where {ei}\{e_i\}{ei} is any orthonormal basis of H2(Y)H^2(Y)H2(Y) (over Q\mathbb QQ or R\mathbb RR).

Why it might plausibly hit TTT\otimes TTT.
Write the orthogonal decomposition H2(Y)=NS(Y)QT(Y)H^2(Y)=\operatorname{NS}(Y)\otimes\mathbb Q\oplus T(Y)H2(Y)=NS(Y)QT(Y). Expanding ieiei\sum_i e_i\otimes e_iieiei in the block decomposition shows it contains contributions in each of the blocks:

NSNS\operatorname{NS}\otimes\operatorname{NS}NSNS,
NST\operatorname{NS}\otimes TNST and TNST\otimes\operatorname{NS}TNS,
TTT\otimes TTT.
In particular, the TTT\otimes TTT component of cl()\operatorname{cl}(\Delta)cl() equals tBTtt\sum_{t\in\mathcal B_T} t\otimes ttBTtt for a basis BT\mathcal B_TBT of T(Y)T(Y)T(Y), which is nonzero provided T(Y)0T(Y)\neq 0T(Y)=0. Thus a priori [][\Delta][] has a nontrivial TTT\otimes TTT projection.

Why the diagonal may nevertheless "fail" in practice.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun