Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 68
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

A central simplification for codimension 111 cycles is provided by the Lefschetz (1,1)(1,1)(1,1)-theorem, which states:

H1,1(X)H2(X,Z)=Pic(X),H^{1,1}(X) \cap H^2(X,\mathbb{Z}) \;=\; \operatorname{Pic}(X),H1,1(X)H2(X,Z)=Pic(X),

for any smooth projective variety XXX over C\mathbb{C}C. In other words, every integral cohomology class of type (1,1)(1,1)(1,1) is the class of an algebraic divisor. This result establishes the Hodge Conjecture for divisors and shows that, in codimension 111, the conjecture is not only true but structurally guaranteed by the geometry of projective varieties.

1. Application to EEE \times EEE

For X=EEX = E \times EX=EE, we computed in Section III.A that

h1,1(X)=4.h^{1,1}(X) = 4.h1,1(X)=4.

A basis for H1,1(X)H^{1,1}(X)H1,1(X) can be represented by the classes of the following divisors:

a. Horizontal divisor: Dh=E{p}D_h = E \times \{p\}Dh=E{p}.
b. Vertical divisor: Dv={p}ED_v = \{p\} \times EDv={p}E.
c. Diagonal divisor: ={(x,x)EE}\Delta = \{(x,x) \in E \times E\}={(x,x)EE}.
d. Anti-diagonal or correction class: DhDv\Delta - D_h - D_vDhDv, completing the basis.
By the Lefschetz (1,1)(1,1)(1,1)-theorem, these four classes span the entire group H1,1(X)H2(X,Z)H^{1,1}(X) \cap H^2(X,\mathbb{Z})H1,1(X)H2(X,Z). Thus:

NS(X)QH1,1(X)H2(X,Q),\operatorname{NS}(X) \otimes \mathbb{Q} \;\cong\; H^{1,1}(X)\cap H^2(X,\mathbb{Q}),NS(X)QH1,1(X)H2(X,Q),

where NS(X)\operatorname{NS}(X)NS(X) is the Nron--Severi group of XXX.

2. Closure in the CAS-6 framework

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun