Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 60
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Deligne, P. (1971). Thorie de Hodge II. Publications Mathmatiques de l'IHS, 40, 5--57.
A seminal development of mixed Hodge structures, extending the foundational understanding of Hodge theory beyond smooth projective varieties.

  • Deligne, P. (1974). Thorie de Hodge III. Publications Mathmatiques de l'IHS, 44, 5--77.
    Further elaboration of the structure and properties of Hodge theory, with critical consequences for algebraic cycles.

  • Voisin, C. (2002). Hodge Theory and Complex Algebraic Geometry I. Cambridge Studies in Advanced Mathematics, Vol. 76. Cambridge University Press.
    A modern introduction to Hodge theory, widely regarded as one of the most accessible and rigorous accounts of the subject.

  • Voisin, C. (2003). Hodge Theory and Complex Algebraic Geometry II. Cambridge Studies in Advanced Mathematics, Vol. 77. Cambridge University Press.
    Continuation of the above, including applications to the Hodge Conjecture and advanced perspectives on cycles and cohomology.

  • Andr, Y. (2004). Une introduction aux motifs (motifs purs, motifs mixtes, priodes). Panoramas et Synthses, Vol. 17. Socit Mathmatique de France.
    Introduction to motives and periods, contextualizing HC within the broader scope of the theory of motives and arithmetic geometry.

  • Griffiths, P. A. (1969). On the periods of certain rational integrals: I, II. Annals of Mathematics, 90(3), 460--541; 90(3), 496--541.
    Classic papers on variations of Hodge structure, laying the analytic foundations for the study of transcendental cohomology classes.

  • B. Sources on Complex Systems and CAS Frameworks

    1. Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press.
      A foundational text on complex adaptive systems, introducing mechanisms of interaction, adaptation, and emergent behavior.

    2. Holland, J. H. (1998). Emergence: From Chaos to Order. Perseus Books.
      Explores the principle of emergence in adaptive systems, relevant for interpreting the geometry of emergent algebraic cycles in CAS-6.

    3. Prigogine, I., & Stengers, I. (1984). Order Out of Chaos: Man's New Dialogue with Nature. Bantam Books.
      A seminal account of dissipative structures and self-organization, emphasizing stability and bifurcation---concepts echoed in CAS-6 stability analysis.

    4. Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press.
      Develops formal models of order and complexity, reinforcing the idea that closure and stability are central to systemic emergence.

    5. Mohon tunggu...

      Lihat Konten Inovasi Selengkapnya
      Lihat Inovasi Selengkapnya
      Beri Komentar
      Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

      Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
    LAPORKAN KONTEN
    Alasan
    Laporkan Konten
    Laporkan Akun