Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 68
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

a. Select target YYY: a singular K3 or a K3 with well-studied moduli of sheaves.
b. Gather FM data: identify moduli spaces MMM and universal kernels P\mathcal PP (or derived autoequivalences). Extract Mukai vectors.
c. Compute KT\Phi_{\mathcal K}|_TKT for kernels K\mathcal KK obtained by composing P\mathcal PP with its adjoint, or by using known autoequivalences.
d. Form TTT\otimes TTT vectors and test span; if span = 4, flag success and seek references/proofs that the kernels/classes are algebraic (Mukai/Huybrechts/others).
e. If unsuccessful, iterate: enlarge candidate set (other moduli, different stability conditions), consider twisted kernels, or add arithmetic specializations (CM/Kuga--Satake) to increase the chance of algebraicity.
Summary

Fourier--Mukai transforms and derived equivalences are central, principled sources of non-trivial algebraic correspondences that can act on the transcendental Hodge structure.
From the CAS-6 viewpoint they are precisely the interaction motifs needed to fill orphan topological nodes: they supply algebraic weights (via cohomological transforms), are often deformation-stable, and produce explicit geometric outputs (kernel classes in H4(YY)H^4(Y\times Y)H4(YY)).
Practically, integrating FM into CAS-6 reduces the transcendental realization problem to a finite cohomological computation (compute KT\Phi_{\mathcal K}|_TKT, test rank). When such computations succeed, they produce strong heuristic evidence --- and in many cases rigorous proof --- that the missing Hodge classes are algebraic.

C. Computational experiments for identifying candidate cycles (practical program)

This subsection gives a concrete, reproducible experiment plan (algorithms, checks, software recommendations, expected outputs) to search for algebraic correspondences that fill the transcendental block T(Y)T(Y)T(Y)\otimes T(Y)T(Y)T(Y) on a chosen K3 YYY. The plan turns the CAS-6 diagnostics into explicit computations: build explicit NS/T bases, model the H2,2H^{2,2}H2,2 space, represent candidate correspondences as cohomological operators, project their classes to TTT\otimes TTT, and test linear independence (rank = 4). Everything below is actionable and written so you (or I, on your go-ahead) can run it in Sage/Magma/Python.

1. Goals (succinct)

a. Produce an explicit rational model of
H2,2(YY)H4(YY,Q)H^{2,2}(Y\times Y)\cap H^4(Y\times Y,\mathbb Q)H2,2(YY)H4(YY,Q)
with decomposition into NSNS, NST TNS, and TT blocks.
b. For a library of candidate correspondences ZZZ (diagonal variants, graphs of automorphisms, FM kernels, Shioda--Inose-induced cycles), compute the cohomology class [Z][Z][Z] and its projection to TTT\otimes TTT.
c. Test whether the projected vectors span the entire 4-dimensional TTT\otimes TTT. If yes strong heuristic evidence that those correspondences restore CAS-6 closure; if no iterate with further candidates.
2. Required ingredients / data

A concrete K3 surface YYY with explicit NS generators and Gram matrix (e.g., Fermat quartic or a Shioda--Inose singular K3). (We already identified sources.)
An explicit integral basis for H2(Y,Q)H^2(Y,\mathbb Q)H2(Y,Q) adapted to decomposition NS(Y)T(Y)\operatorname{NS}(Y)\oplus T(Y)NS(Y)T(Y). For singular K3s dimT=2\dim T=2dimT=2.
Candidate correspondences and their geometric description:
diagonal / small diagonal / corrected diagonal;
graphs \Gamma_\sigma of automorphisms \sigma (when available);
FM kernels / composed kernels K\mathcal KK coming from universal families (Mukai vectors);
Shioda--Inose pushforwards from a Kummer/abelian surface.
Software: SageMath (ideal), Magma (if available), or Python with sympy/numpy for rational/numeric linear algebra. For heavy lattice work Sage/Magma recommended.
3. High-level algorithm (step-by-step)

Step 0 --- Choose YYY and load NS data

Choose YYY (recommend: Fermat quartic or specific Shioda--Inose example).
Load published NS generator list and Gram matrix GNSG_{\mathrm{NS}}GNS (or compute from geometry).
Using lattice routines, compute a Z\mathbb ZZ-basis {n1,...,n20}\{n_1,\dots,n_{20}\}{n1,...,n20} for NS(Y)\operatorname{NS}(Y)NS(Y) and its Gram matrix.
Step 1 --- Compute T(Y)T(Y)T(Y) (orthogonal complement)

Let K3\Lambda_{\mathrm{K3}}K3 be the standard K3 lattice. Embed GNSG_{\mathrm{NS}}GNS primitively and compute the orthogonal complement TTT (rank 2 for =20\rho=20=20). Output basis {t1,t2}\{t_1,t_2\}{t1,t2} and Gram matrix GTG_TGT.
Verify: signature, determinant (compare literature).
Step 2 --- Build basis of H2,2(YY)H^{2,2}(Y\times Y)H2,2(YY)

Use Knneth: a convenient basis for H4(YY,Q)H^4(Y\times Y,\mathbb Q)H4(YY,Q) is the tensor products eieje_i\otimes e_jeiej where {e}\{e_\alpha\}{e} runs over basis of H2(Y,Q)H^2(Y,\mathbb Q)H2(Y,Q) plus two extreme factors H0H4H^0\otimes H^4H0H4 and H4H0H^4\otimes H^0H4H0.
Identify the subspace of Hodge type (2,2)(2,2)(2,2) (for K3K3 this is the full H^4 of interest minus degree shifts). Practically, restrict to H2H2H^2\otimes H^2H2H2 block plus the two extremes.
Reorder basis so that the coordinates split as: NSNS (400), NST (40), TNS (40), TT (4), plus extremes (2).
Step 3 --- Represent cohomology pairing and push/pull operations

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun