Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 60
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Adiv:=spanQ(cl1(CH1(Y))cl1(CH1(Y)))A_{\mathrm{div}}\;:=\;\operatorname{span}_{\mathbb Q}\big(\operatorname{cl}_1(\mathrm{CH}^1(Y))\otimes\operatorname{cl}_1(\mathrm{CH}^1(Y))\big)Adiv:=spanQ(cl1(CH1(Y))cl1(CH1(Y)))

has dimension at most 400400400 when (Y)=20\rho(Y)=20(Y)=20. The difference

:=TX/Adiv\Delta \;:=\; T_X \;/\; A_{\mathrm{div}}:=TX/Adiv

is a four-dimensional rational vector space isomorphic to T(Y)QT(Y)T(Y)\otimes_{\mathbb Q} T(Y)T(Y)QT(Y) (where T(Y)T(Y)T(Y) is the transcendental lattice of YYY). In CAS-6 language this is precisely a failure of closure between the topological layer (L,C)(L,C)(L,C) and the algebraic layer (W,P)(W,P)(W,P): four topological "nodes" (cohomological configurations) remain without algebraic weights and so produce no geometric outputs.

Below we analyze this incomplete closure more formally, describe how it manifests within the CAS-6 components, and explain the mathematical and heuristic consequences.

1. Precise formulation of incomplete closure

Adopt the shorthand mapping from CAS-6 to Hodge theory:

(L,C) H2p(X,Q)Hp,p(X),(W,P) clp(CHp(X)Q).(L,C)\ \longleftrightarrow\ H^{2p}(X,\mathbb Q)\cap H^{p,p}(X),\qquad (W,P)\ \longleftrightarrow\ \operatorname{cl}_p(\mathrm{CH}^p(X)\otimes\mathbb Q).(L,C) H2p(X,Q)Hp,p(X),(W,P) clp(CHp(X)Q).

For X=YYX=Y\times YX=YY and p=2p=2p=2 we write

TX=(L,C)XandA:=(W,P)X.T_X = (L,C)_X \quad\text{and}\quad A := (W,P)_X.TX=(L,C)XandA:=(W,P)X.

Closure of the system at this level is the statement that cl2\operatorname{cl}_2cl2 is surjective onto TXT_XTX:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun