Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 60
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

dimCH2(Y,C)=22.\dim_{\mathbb C} H^2(Y,\mathbb C) \;=\; 22.dimCH2(Y,C)=22.

2. Knneth decomposition and computation of h2,2(X)h^{2,2}(X)h2,2(X)

By the Knneth decomposition for Hodge structures, the Hodge numbers of the product X=YYX=Y\times YX=YY are given by the convolution

hp,q(X)=a+c=pb+d=qha,b(Y)hc,d(Y).h^{p,q}(X) \;=\; \sum_{a+c=p}\sum_{b+d=q} h^{a,b}(Y)\cdot h^{c,d}(Y).hp,q(X)=a+c=pb+d=qha,b(Y)hc,d(Y).

For the bi-degree (2,2)(2,2)(2,2) we therefore compute

h2,2(X)=a+c=2b+d=2ha,b(Y)hc,d(Y).h^{2,2}(X) \;=\; \sum_{a+c=2}\sum_{b+d=2} h^{a,b}(Y)\,h^{c,d}(Y).h2,2(X)=a+c=2b+d=2ha,b(Y)hc,d(Y).

Using the nonzero Hodge numbers for YYY (listed above) one obtains

h2,2(X)=404.h^{2,2}(X) \;=\; 404.h2,2(X)=404.

(An explicit bookkeeping of the contributing tensor-products shows that this value equals the sum of contributions coming from H2(Y)H2(Y)H^{2}(Y)\otimes H^{2}(Y)H2(Y)H2(Y), together with the two trivial extreme terms H0H4H^0\otimes H^4H0H4 and H4H0H^4\otimes H^0H4H0; the principal bulk of the count arises from the H2H2H^2\otimes H^2H2H2 factor.)

3. Decomposition of H2(Y,Q)H^2(Y,\mathbb Q)H2(Y,Q): Nron--Severi and transcendental parts

Over Q\mathbb QQ (or Z\mathbb ZZ after tensoring with Q\mathbb QQ) the second cohomology of YYY admits an orthogonal decomposition

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun