cl2(CH2(X)Q)=TX.\operatorname{cl}_2\big(\mathrm{CH}^2(X)\otimes\mathbb Q\big) \;=\; T_X.cl2(CH2(X)Q)=TX.
Empirically and by standard lattice counts in the =20\rho=20=20 case, one has
dimQAdiv=400<404=dimQTX,\dim_{\mathbb Q} A_{\mathrm{div}} = 400 < 404 = \dim_{\mathbb Q} T_X,dimQAdiv=400<404=dimQTX,
so that AdivA_{\mathrm{div}}Adiv is a proper subspace of the full algebraic image cl2(CH2(X)Q)\operatorname{cl}_2(\mathrm{CH}^2(X)\otimes\mathbb Q)cl2(CH2(X)Q) if the Hodge Conjecture holds, or else a proper subspace of TXT_XTX if HC fails. At the level of CAS-6 this quantifies the system deficit: four topological configurations lack the straightforward algebraic realization afforded by products of divisors.
2. Localization of the defect in CAS-6 coordinates
Using the decomposition
H2(Y,Q)=NS(Y)QT(Y),H^2(Y,\mathbb Q)=\operatorname{NS}(Y)\otimes\mathbb Q \oplus T(Y),H2(Y,Q)=NS(Y)QT(Y),
we have the induced decomposition on H4(X,Q)H^4(X,\mathbb Q)H4(X,Q) (restricting to (2,2)(2,2)(2,2)-type):
TX=(NSNS)(NSTTNS)(TT)(extreme H0H4+H4H0).T_X \;=\; \Big(\operatorname{NS}\otimes\operatorname{NS}\Big)\;\oplus\;\Big(\operatorname{NS}\otimes T \oplus T\otimes\operatorname{NS}\Big)\;\oplus\;\Big(T\otimes T\Big)\;\oplus\;(\text{extreme } H^0\otimes H^4 + H^4\otimes H^0).TX=(NSNS)(NSTTNS)(TT)(extreme H0H4+H4H0).
The subspace AdivA_{\mathrm{div}}Adiv is contained in the first summand NSNS\operatorname{NS}\otimes\operatorname{NS}NSNS (dimension 400400400 when =20\rho=20=20), while the residue \Delta is exactly the TTT\otimes TTT block (dimension 444). Thus the missing nodes are localized to the block TTT\otimes TTT: they are pure transcendental tensors whose algebraicity (or lack thereof) determines closure.
From the CAS-6 standpoint: the topology layer (L,C)(L,C)(L,C) includes configurations indexed by the full set of Knneth factors; the algebraic weights (W)(W)(W) generated by divisor-products cover only the NSNS block but leave the TT block unweighted. The "probability" PPP of an a priori random topological configuration being algebraic is therefore strictly less than one and equals 400/404400/404400/404 in the maximal case (heuristically).