Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 51
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

h2,2(E4)=6.h^{2,2}(E^4) \;=\; 6.h2,2(E4)=6.

Equivalently, one may enumerate the pure-type tensors

ijk,{i,j,k,}={1,2,3,4},\alpha_{i}\wedge\alpha_{j}\otimes \overline\alpha_{k}\wedge\overline\alpha_{\ell}, \qquad \{i,j,k,\ell\}=\{1,2,3,4\},ijk,{i,j,k,}={1,2,3,4},

where m\alpha_mm denotes the holomorphic 111-form on the mmm-th factor and m\overline\alpha_mm its conjugate. Each unordered choice {i,j}\{i,j\}{i,j} of two factors determines a unique (up to scalar) basis element of H2,2(X)H^{2,2}(X)H2,2(X).

3. Algebraic generators: products of point classes (product of divisors)

An elliptic curve EEE has algebraic divisors of codimension 111 given by points. On X=E4X=E^4X=E4, a codimension 222 algebraic cycle may be produced by taking the product of point-classes on two chosen factors and taking the whole fiber EEE on the remaining factors. Concretely, for indices 1i<j41\le i<j\le 41i<j4 and fixed points piEi,pjEjp_i\in E_i, p_j\in E_jpiEi,pjEj, the subvariety

Zi,j:=E1Ei1{pi}Ei+1Ej1{pj}Ej+1E4Z_{i,j} \;:=\; E_1\times\cdots\times E_{i-1}\times\{p_i\}\times E_{i+1}\times\cdots\times E_{j-1}\times\{p_j\}\times E_{j+1}\times\cdots\times E_4Zi,j:=E1Ei1{pi}Ei+1Ej1{pj}Ej+1E4

is a codimension-2 algebraic cycle in XXX. The class [Zi,j][Z_{i,j}][Zi,j] lies in CH2(X)\mathrm{CH}^2(X)CH2(X) and its image under the cycle class map is a class in H2,2(X)H4(X,Q)H^{2,2}(X)\cap H^4(X,\mathbb Q)H2,2(X)H4(X,Q).

There are exactly (42)=6\binom{4}{2}=6(24)=6 independent such product cycles (up to rational equivalence and for suitably generic choices of points), one for each unordered choice {i,j}\{i,j\}{i,j}. These product cycles furnish six algebraic classes which we denote z12,z13,z14,z23,z24,z34z_{12}, z_{13}, z_{14}, z_{23}, z_{24}, z_{34}z12,z13,z14,z23,z24,z34.

4. Identification of Knneth basis with product cycles

Under the Knneth isomorphism, the abstract basis element determined by the choice {i,j}\{i,j\}{i,j} (two (1,0)(1,0)(1,0)-factors on i,ji,ji,j and (0,1)(0,1)(0,1)-factors on the complement) corresponds, up to a nonzero scalar, to the class [Zi,j][Z_{i,j}][Zi,j] obtained by taking points on factors iii and jjj. Thus there is a natural bijection between the Knneth indexing of H2,2(X)H^{2,2}(X)H2,2(X) and the list of product-of-point cycles {[Zi,j]}\{[Z_{i,j}]\}{[Zi,j]}. Consequently, the six classes [Zi,j][Z_{i,j}][Zi,j] form a Q\mathbb QQ-basis of H2,2(X)H4(X,Q)H^{2,2}(X)\cap H^4(X,\mathbb Q)H2,2(X)H4(X,Q).

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun