Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 60
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

with dimH1,0(E)=dimH0,1(E)=1\dim H^{1,0}(E)=\dim H^{0,1}(E)=1dimH1,0(E)=dimH0,1(E)=1. Write \alpha for a basis element of H1,0(E)H^{1,0}(E)H1,0(E) and \overline\alpha for its complex conjugate in H0,1(E)H^{0,1}(E)H0,1(E).

For the product X=E4X=E^4X=E4, the Knneth decomposition gives a canonical identification

H(X,C)i=14H(Ei,C),H^{\ast}(X,\mathbb C) \;\cong\; \bigotimes_{i=1}^4 H^\ast(E_i,\mathbb C),H(X,C)i=14H(Ei,C),

and the Hodge decomposition on XXX is obtained by taking tensor products of the Hodge types on each factor.

A general element of H2,2(X)H^{2,2}(X)H2,2(X) arises as a linear combination of pure tensors whose bi-degrees on the four factors sum to (2,2)(2,2)(2,2). Concretely, a pure tensor has type

(p1,q1)(p2,q2)(p3,q3)(p4,q4)(\,p_1,q_1\,)\otimes(\,p_2,q_2\,)\otimes(\,p_3,q_3\,)\otimes(\,p_4,q_4\,)(p1,q1)(p2,q2)(p3,q3)(p4,q4)

with ipi=2\sum_i p_i = 2ipi=2 and iqi=2\sum_i q_i = 2iqi=2. Because each Hr,s(E)H^{r,s}(E)Hr,s(E) is nonzero only for (r,s){(0,0),(1,0),(0,1),(1,1)}(r,s)\in\{(0,0),(1,0),(0,1),(1,1)\}(r,s){(0,0),(1,0),(0,1),(1,1)} (and H1,1(E)H^{1,1}(E)H1,1(E) is trivial except in degree 2), the nontrivial contributions to H2,2(X)H^{2,2}(X)H2,2(X) come from selecting exactly two factors to contribute a (1,0)(1,0)(1,0)-piece and two factors to contribute a (0,1)(0,1)(0,1)-piece (up to permutation), or from combinations involving H2(E)H^2(E)H2(E) on a factor together with H0(E)H^0(E)H0(E) on others --- but the latter locates in different bi-degree totals and, after accounting for degrees, reduces to the same combinatorial count described next.

2. Combinatorial count: h2,2(E4)=(42)=6\;h^{2,2}(E^4)=\binom{4}{2}=6h2,2(E4)=(24)=6

To produce type (2,2)(2,2)(2,2) one must choose exactly two of the four factors to contribute a (1,0)(1,0)(1,0)-form and the complementary two factors to contribute (0,1)(0,1)(0,1)-forms. The number of unordered choices of two factors from four is

(42)=6.\binom{4}{2} \;=\; 6.(24)=6.

Thus

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun