Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 51
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

3. Structural consequences and necessary algebraic motifs

The failure of closure forces an explicit requirement for additional algebraic motifs: correspondences ZCH2(YY)Z\in \mathrm{CH}^2(Y\times Y)ZCH2(YY) whose induced endomorphisms Z:H2(Y)H2(Y)\Phi_Z:H^2(Y)\to H^2(Y)Z:H2(Y)H2(Y) act nontrivially on T(Y)T(Y)T(Y) (so that their classes have nonzero projection onto TTT\otimes TTT). In linear-algebra terms, letting {t1,t2}\{t_1,t_2\}{t1,t2} be a Q\mathbb QQ-basis of T(Y)T(Y)T(Y), one seeks correspondences Z1,...,ZmZ_1,\dots,Z_mZ1,...,Zm such that the collection of symmetric tensors {(Zkti)tj}k,i,j\{(\Phi_{Z_k}t_i)\otimes t_j\}_{k,i,j}{(Zkti)tj}k,i,j spans TTT\otimes TTT (or, equivalently, such that the images of the restricted maps ZkT\Phi_{Z_k}|_{T}ZkT generate End(T)\operatorname{End}(T)End(T) sufficiently to produce four independent symmetric combinations).

Concretely, restoration of CAS-6 closure requires at least the following algebraic data:

one or more correspondences whose projection to TTT\otimes TTT is nonzero (so that \Delta is nontrivial), and
a set of such correspondences whose TTT-restricted actions are linearly independent in End(T)\operatorname{End}(T)End(T), so that their symmetric tensor images span a four-dimensional subspace.
Absent such correspondences, the CAS-6 system remains incomplete.

4. Heuristic diagnostics and linear-algebra testing

The CAS-6 viewpoint suggests a pragmatic testing pipeline:

a. Construct explicit NS and T bases for the chosen YYY (using published lattice data for singular K3s or explicit computational methods).
b. Model candidate correspondences ZZZ by computing (or approximating numerically) the matrix of Z\Phi_ZZ in the NST\operatorname{NS}\oplus TNST basis. Practically, one computes pairings
(Zei,ej)=p2((p1ei)[Z]),ej,(\Phi_Z e_i,e_j) = \langle p_{2*}((p_1^* e_i)\cup [Z]), e_j\rangle,(Zei,ej)=p2((p1ei)[Z]),ej,
for basis elements ei,eje_i,e_jei,ej.
c. Extract the TTT-block of Z\Phi_ZZ, i.e. the restriction ZT\Phi_Z|_TZT. Form the induced vectors in TTT\otimes TTT corresponding to the cohomology class of ZZZ.
d. Test linear independence of the obtained TTT\otimes TTT vectors. If a set of correspondences yields rank 444, the CAS-6 algebraic layer is heuristically restored.
Our earlier numerical experiment was a linear implementation of this pipeline in a simplified model; the experiment failed to increase rank because the chosen candidate vectors had zero components in the modeled TT coordinates. The proper application of this diagnostic requires explicit NS/T data and genuine geometric correspondences (e.g. graphs of automorphisms, Fourier--Mukai kernels, Shioda--Inose transfers) whose action on TTT can be computed.

5. Consequences for the Hodge Conjecture (heuristic vs. formal)

Two logical possibilities remain:

(HC holds for this XXX). Then there must exist algebraic cycles (possibly non-obvious) whose classes project onto a basis of TTT\otimes TTT; the CAS-6 deficit is resolvable by adding appropriate correspondences and the algebraic layer AAA will equal TXT_XTX. The most promising sources for such correspondences are (a) Fourier--Mukai kernels associated with moduli of sheaves on YYY, (b) Shioda--Inose/Kummer correspondences transported from abelian surfaces, (c) graphs of automorphisms in cases where YYY has nontrivial automorphism group, or (d) motivated cycles arising from arithmetic specializations (CM/Kuga--Satake techniques). Establishing algebraicity in these cases typically requires substantial geometry and arithmetic input (e.g. modulispaces, universal families, or reduction arguments).
(HC fails for this XXX). Then the four-dimensional TTT\otimes TTT contains genuine rational Hodge classes that are not algebraic; in CAS-6 terms the system is intrinsically incomplete at this level, and no family of algebraic correspondences can fill the orphan nodes. Such a counterexample would have deep consequences and would necessitate a fundamental revision of the idea that topology must always be interpretable algebraically.
At present, the literature contains instances where specialized techniques (Kuga--Satake, Shioda--Inose, Mukai) yield algebraicity for powers of K3 surfaces in restricted families; these confirm that CAS-6 closure can often be achieved under extra structure (CM, special correspondences). Hence the CAS-6 diagnosis is constructive: it localizes the obstruction and points to precisely the kinds of data that could remove it.

6. Recommended constructive program (CAS-6 guided)

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun