Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Heuristic System Approach to the Hodge Conjecture: Insight from the CAS 6 Framework

21 September 2025   16:05 Diperbarui: 21 September 2025   16:05 51
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

Write Betti (singular) cohomology with rational coefficients. By the Knneth formula and the known cohomology of EEE,

Hk(E,Q){Q,k=0,2,Q2,k=1,0,otherwise.H^k(E,\mathbb{Q}) \simeq \begin{cases} \mathbb{Q}, & k=0,2,\\ \mathbb{Q}^2, & k=1,\\ 0, & \text{otherwise.} \end{cases}Hk(E,Q)Q,Q2,0,k=0,2,k=1,otherwise.

Hence for the surface X=EEX=E\times EX=EE we have

H2(X,Q)H2(E,Q)H0(E,Q)H1(E,Q)H1(E,Q)H0(E,Q)H2(E,Q).H^2(X,\mathbb{Q}) \;\simeq\; H^2(E,\mathbb{Q})\otimes H^0(E,\mathbb{Q}) \;\oplus\; H^1(E,\mathbb{Q})\otimes H^1(E,\mathbb{Q}) \;\oplus\; H^0(E,\mathbb{Q})\otimes H^2(E,\mathbb{Q}).H2(X,Q)H2(E,Q)H0(E,Q)H1(E,Q)H1(E,Q)H0(E,Q)H2(E,Q).

Concretely, writing uuu for a generator of H2(E,Q)H^2(E,\mathbb{Q})H2(E,Q) and {a,b}\{a,b\}{a,b} for a basis of H1(E,Q)H^1(E,\mathbb{Q})H1(E,Q) (dual to a choice of homology cycles), a convenient Q \mathbb{Q}Q-basis for H2(X,Q)H^2(X,\mathbb{Q})H2(X,Q) may be taken as

{u1,1u,aa,ab,ba,bb},\{\,u\otimes 1,\; 1\otimes u,\; a\otimes a,\; a\otimes b,\; b\otimes a,\; b\otimes b\,\},{u1,1u,aa,ab,ba,bb},

so that dimQH2(X,Q)=6\dim_{\mathbb Q} H^2(X,\mathbb{Q}) = 6dimQH2(X,Q)=6.

Passing to complex coefficients and Hodge decomposition, recall that for the elliptic curve EEE,

H1(E,C)=H1,0(E)H0,1(E),H^1(E,\mathbb{C}) = H^{1,0}(E)\oplus H^{0,1}(E),H1(E,C)=H1,0(E)H0,1(E),

with dimH1,0(E)=dimH0,1(E)=1\dim H^{1,0}(E)=\dim H^{0,1}(E)=1dimH1,0(E)=dimH0,1(E)=1. Using the Knneth decomposition of Hodge types on X=EEX=E\times EX=EE, the Hodge summands of H2(X,C)H^2(X,\mathbb{C})H2(X,C) are

H2,0(X)=H1,0(E)H1,0(E),H1,1(X)H1,0(E)H0,1(E)H0,1(E)H1,0(E)H2,0H0,2,H^{2,0}(X)=H^{1,0}(E)\otimes H^{1,0}(E),\qquad H^{1,1}(X) \cong H^{1,0}(E)\otimes H^{0,1}(E)\;\oplus\;H^{0,1}(E)\otimes H^{1,0}(E)\;\oplus\; H^{2,0}\oplus H^{0,2},H2,0(X)=H1,0(E)H1,0(E),H1,1(X)H1,0(E)H0,1(E)H0,1(E)H1,0(E)H2,0H0,2,

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun