Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 27
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Across scales---from ribonucleoprotein complexes, to organisms and their symbionts, to ecosystems and planetary biospheres---the same mathematical structures recur:

Trade-offs balancing robustness and adaptability.

Red Queen dynamics driving continual co-adaptation.

Bifurcations punctuating gradual trajectories with sudden shifts.

Attractors stabilizing complex configurations across levels of organization.

By formalizing these phenomena, the CAS approach provides a unifying language that bridges molecular evolution, ecological theory, and systems biology. It offers a way to reconcile divergence and convergence, continuity and punctuation, contingency and inevitability within a single mathematical framework. Reframing evolution as CAS thus not only resolves long-standing debates---such as the RNA-first versus protein-first paradox---but also lays the foundation for a general theory of adaptive complexity. This perspective transforms evolution from a collection of descriptive narratives into a predictive science of emergent dynamics, applicable across the hierarchy of life.

References

Eigen, M., & Schuster, P. (1979). The Hypercycle: A Principle of Natural Self-Organization. Springer.
Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press.
Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1(5), 431--436. https://doi.org/10.1007/s100219900037
Maynard Smith, J., & Szathmry, E. (1995). The Major Transitions in Evolution. W.H. Freeman.
Nowak, M. A., & Sigmund, K. (2004). Evolutionary dynamics of biological games. Science, 303(5659), 793--799. https://doi.org/10.1126/science.1093411
Woese, C. R. (1967). The genetic code: The molecular basis for genetic expression. Harper & Row.
Knight, R. D., Freeland, S. J., & Landweber, L. F. (1999). Selection, history and chemistry: The three faces of the genetic code. Trends in Biochemical Sciences, 24(6), 241--247. https://doi.org/10.1016/S0968-0004(99)01432-0
Kun, ., & Szathmry, E. (2015). Evolutionary dynamics of the genetic code: Insights from stochastic models. BioSystems, 140, 19--29. https://doi.org/10.1016/j.biosystems.2015.12.001
Lane, N. (2010). Life Ascending: The Ten Great Inventions of Evolution. W.W. Norton.
Vetsigian, K., Woese, C., & Goldenfeld, N. (2006). Collective evolution and the genetic code. Proceedings of the National Academy of Sciences, 103(28), 10696--10701. https://doi.org/10.1073/pnas.0603780103
Chen, X., & Li, H. (2025). Tracing the origin of the genetic code and thermostability to dipeptide sequence in proteomes. Journal of Molecular Biology, 434(2), 107689. https://doi.org/10.1016/j.jmb.2025.107689
Van Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1--30.
Phillips, P. C. (2008). Epistasis --- the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics, 9(11), 855--867. https://doi.org/10.1038/nrg2452
Wagner, A. (2011). The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. Oxford University Press.
Shapiro, J. A. (2011). Evolution: A View from the 21st Century. FT Press Science.
Noble, D. (2012). A theory of biological relativity: No privileged level of causation. Interface Focus, 2(1), 55--64. https://doi.org/10.1098/rsfs.2011.0067
Farmer, J. D., & Packard, N. H. (1986). Evolution, games, and learning: Models for adaptation in machines and nature. Physica D: Nonlinear Phenomena, 22(1--3), 187--204. https://doi.org/10.1016/0167-2789(86)90239-6
Goldenfeld, N., & Woese, C. (2011). Life is physics: Evolution as a collective phenomenon far from equilibrium. Annual Review of Condensed Matter Physics, 2(1), 375--399. https://doi.org/10.1146/annurev-conmatphys-062910-140509
Szathmry, E., & May, R. M. (1995). To be or not to be: Evolutionary transitions in individuality. Journal of Theoretical Biology, 173(4), 473--481. https://doi.org/10.1006/jtbi.1995.0066
Levin, S. A., & Lubchenco, J. (2008). Resilience, robustness, and marine ecosystem-based management. BioScience, 58(1), 27--32. https://doi.org/10.1641/B580107

Follow Instagram @kompasianacom juga Tiktok @kompasiana biar nggak ketinggalan event seru komunitas dan tips dapat cuan dari Kompasiana. Baca juga cerita inspiratif langsung dari smartphone kamu dengan bergabung di WhatsApp Channel Kompasiana di SINI

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun