Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 27
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Traditional molecular evolution tracks allele frequencies in populations; CAS links this with molecular-level dynamics of RNA--protein complexes. Replicator--mutator equations, extended with ecological coupling, provide a means to simulate how coding rules and protein stability coevolve under selective pressures.

4. Bridging micro- and macro-evolution.

CAS situates molecular processes within a hierarchy: molecular interactions (codon stability, dipeptide motifs) organismal fitness (robustness under thermal stress) population trajectories. This multi-scale approach provides a mechanistic bridge between molecular evolution and larger evolutionary patterns such as punctuated equilibria or Red Queen cycles. In this integration, molecular evolution is not displaced but extended: CAS provides the mathematics to capture interdependent, co-adaptive processes that classical frameworks treat only descriptively. RNA--protein coevolution thus emerges not as a paradox but as a natural consequence of complex adaptive dynamics.

IV. Mathematical Framework

A. Genotype--phenotype mapping (RNA motifs protein domains)

A central challenge in modeling RNA--protein coevolution lies in formalizing the mapping between genotypes (nucleotide sequences and codon assignments) and phenotypes (protein structures and functional domains). Unlike simple one-to-one mappings, this relationship is characterized by nonlinearity, degeneracy, and interdependence. A CAS framework provides a way to capture these complexities.

1. Representation of genotypes.

RNA sequences are modeled as strings G=(g1,g2,...,gn)G = (g_1, g_2, ..., g_n)G=(g1,g2,...,gn), where each gig_igi is a codon drawn from the set of 64 possible triplets. Mutations act at the level of substitution, insertion, or deletion, generating a mutational neighborhood N(G)\mathcal{N}(G)N(G).

2. Representation of phenotypes.

Proteins are modeled as structured sequences of amino acids P=(p1,p2,...,pm)P = (p_1, p_2, ..., p_m)P=(p1,p2,...,pm), where pjp_jpj corresponds to codon translation via a genetic code mapping :gipj\phi: g_i \mapsto p_j:gipj. Phenotypic traits are extracted from sequence and structure, such as thermostability T(P)T(P)T(P), folding energy E(P)E(P)E(P), and domain functionality F(P)F(P)F(P).

3. Nonlinear mapping.

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun