Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 27
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

2. Trade-offs in adaptation.

Thermostability vs. flexibility: proteins that are highly stable may sacrifice catalytic adaptability; RNA motifs that are rigid may sacrifice coding efficiency.
Exploration vs. exploitation: high RNA mutability enhances exploration of coding space but risks destabilizing established protein domains; protein conservatism stabilizes function but reduces adaptability.
Short-term vs. long-term fitness: an RNA mutation may immediately destabilize codon--amino acid mapping but enable later innovations in protein structure.

3. Context dependence.

Fitness functions are ecologically embedded. For example, under high thermal stress, thermostability terms dominate; in nutrient-limited environments, catalytic efficiency is weighted more heavily.
This context sensitivity can be modeled by letting coefficients ,,\alpha, \beta, \gamma,, vary dynamically with environmental parameters E(t)E(t)E(t).

4. W(R,P;E(t))=(E(t))fR+(E(t))fP(E(t))CW(R, P; E(t)) = \alpha(E(t)) f_R + \beta(E(t)) f_P - \gamma(E(t)) CW(R,P;E(t))=(E(t))fR+(E(t))fP(E(t))C

5. Stability conditions.

The RNA--protein system stabilizes when the joint fitness W(R,P)W(R, P)W(R,P) reaches a local maximum, corresponding to a coevolutionary attractor.
Trade-offs ensure that no single component maximizes fitness in isolation; instead, balanced optimization across RNA and protein is required.

This interdependent fitness formalism reframes adaptation not as an optimization of isolated entities, but as a coevolutionary negotiation constrained by trade-offs, feedback, and ecological pressures. It provides the foundation for embedding RNA--protein dynamics into replicator--mutator and predator--prey style models.

C. Replicator--mutator dynamics for coupled populations

To capture the coevolution of RNA and proteins, we extend the replicator--mutator framework to model two coupled populations: RNA sequences (RRR) and protein structures (PPP). Each population evolves under mutation, selection, and feedback from the other.

1. Classical replicator--mutator equation.
For a population of types i=1,...,ni = 1, \ldots, ni=1,...,n, the replicator--mutator equation is:
xi=j=1nxjfjQjixi\dot{x}_i = \sum_{j=1}^n x_j f_j Q_{ji} - \phi x_ixi=j=1nxjfjQjixi
where:

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun