Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 27
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

2. Punctuated equilibria.

The fossil record and molecular evolution often display long periods of stasis punctuated by rapid transitions. In RNA--protein systems, feedback-driven dynamics can generate critical thresholds or bifurcations, where small changes (e.g., in codon usage) lead to sudden transitions in stability or coding efficiency. CAS formalism captures such nonlinear shifts through attractor switching and phase transitions, providing a mechanistic basis for punctuated equilibria at the molecular scale.

3. Coevolutionary theory.

Coevolution typically describes reciprocal adaptations between species (e.g., predator--prey), but its principles extend to molecular partners. RNA and proteins form a classic intra-system coevolutionary pair, where each adapts in response to changes in the other.
Red Queen dynamics---continuous adaptation required to maintain stability---are inherent to this relationship: RNA evolves coding efficiency, while proteins evolve folding robustness, each chasing the other's adaptive shifts. By embedding RNA--protein interactions within CAS, these three perspectives converge. The adaptive landscape becomes a coevolutionary landscape with multiple attractors; punctuated shifts emerge from nonlinear feedback; and Red Queen cycles appear as natural trajectories of the system. This integration provides a rigorous mathematical basis for phenomena that previously remained metaphorical.

C. Integration with molecular evolution

While traditional evolutionary biology has developed powerful models of mutation, selection, and drift, the coevolution of RNA and proteins introduces layers of complexity that strain these frameworks. Complex Adaptive Systems (CAS) theory complements and extends molecular evolution by offering a way to formalize interdependence, feedback, and emergent synchronization.

1. Beyond linear mutation--selection models.

Standard models assume mutations act independently on sequences, with fitness assigned to each variant. In RNA--protein systems, mutations in RNA sequences affect codon assignments, which alter protein structures, which in turn feedback on the stability of RNA translation machinery. CAS captures this nonlinearity by modeling fitness as a property of the system of interactions, not of isolated components.

2. Epistasis and pleiotropy at molecular scale.

In molecular evolution, many genotype--phenotype mappings are shaped by epistasis (interactions among mutations) and pleiotropy (one gene influencing multiple traits). Codon reassignments can shift dipeptide frequencies, influencing both thermostability and folding, creating network-level effects. CAS formalism makes these dependencies explicit, allowing them to be modeled as interaction matrices or multi-agent feedback loops.

3. Coupling molecular dynamics with population dynamics.

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun