Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 27
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

sR,sP>0s_R,s_P>0sR,sP>0 scale selection strength for RNA and protein respectively;
R,P0\mu_R,\mu_P\ge 0R,P0 represent net mutational/turnover loss rates;
FRF_RFR, FPF_PFP are normalized effective fitness contributions that encode interdependence.

A simple and biologically motivated choice for the coupling that retains nonlinearity is

FR(R,P)=aR+bRP1+P,FP(R,P)=aP+bPR1+R,(2)F_R(R,P) = a_R + b_R\,\frac{P}{1+\kappa P},\qquad F_P(R,P) = a_P + b_P\,\frac{R}{1+\kappa R}, \tag{2}FR(R,P)=aR+bR1+PP,FP(R,P)=aP+bP1+RR,(2)

with constants aR,P0a_{R,P}\ge0aR,P0 (intrinsic baseline function), bR,P0b_{R,P}\ge0bR,P0 (coupling gains), and >0\kappa>0>0 a saturation constant that prevents unbounded gains at high partner abundance (captures diminishing returns / cost). This form models the idea that RNA fitness increases with supportive proteins but saturates; likewise for protein fitness with RNA.

Thus the full reduced system is

R=R(sR(aR+bRP1+P)R),P=P(sP(aP+bPR1+R)P).(3)\begin{aligned} \dot R &= R\Big( s_R\big(a_R + b_R\frac{P}{1+\kappa P}\big) - \mu_R \Big),\\[4pt] \dot P &= P\Big( s_P\big(a_P + b_P\frac{R}{1+\kappa R}\big) - \mu_P \Big). \end{aligned} \tag{3}RP=R(sR(aR+bR1+PP)R),=P(sP(aP+bP1+RR)P).(3)

This two-variable model is sufficient to analyze fixed points, linear stability, and the primary bifurcations that generate attractors and oscillations in the CAS.

2. Fixed points

Fixed points (R,P)(R^*,P^*)(R,P) satisfy R=0, P=0\dot R=0,\ \dot P=0R=0, P=0. Trivial solutions include (0,0)(0,0)(0,0) and boundary solutions where one species is extinct. Nontrivial interior equilibria satisfy

sR(aR+bRP1+P)=R,sP(aP+bPR1+R)=P.(4)s_R\Big(a_R + b_R\frac{P^*}{1+\kappa P^*}\Big) = \mu_R,\qquad s_P\Big(a_P + b_P\frac{R^*}{1+\kappa R^*}\Big) = \mu_P. \tag{4}sR(aR+bR1+PP)=R,sP(aP+bP1+RR)=P.(4)

Each equation can be inverted numerically to yield P(R)P^*(\mu_R)P(R) and R(P)R^*(\mu_P)R(P). Existence of a biologically relevant positive interior fixed point requires the right hand sides be in the achievable ranges of the left hand functions; for instance R<sR(aR+bR)\mu_R < s_R(a_R + b_R)R<sR(aR+bR) is necessary (since P/(1+P)1/P/(1+\kappa P)\le 1/\kappaP/(1+P)1/ if scaled; with our normalization simply P/(1+P)(0,1/)P/(1+\kappa P)\in(0,1/\kappa)P/(1+P)(0,1/) and similarly for the other).

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun