Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Mathematical Framework for RNA - Protein Coevolution

21 September 2025   09:49 Diperbarui: 21 September 2025   09:49 27
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Bagikan ide kreativitasmu dalam bentuk konten di Kompasiana | Sumber gambar: Freepik

Traits emerge from epistatic and pleiotropic interactions, not from linear additive effects. Codon--amino acid assignments and dipeptide biases exemplify such nonlinearity, where changes in one site can ripple across molecular and structural networks.

4. Emergence of attractors.

CAS evolve toward attractor states---stable configurations that persist despite perturbations. RNA--protein complexes such as the ribosome can be viewed as emergent attractors: once coupled, they become self-reinforcing and resistant to disruption.

5. Multi-scale organization.

CAS function across hierarchical levels, with dynamics at one level influencing and constraining dynamics at others. RNA--protein interactions operate at the molecular level but shape cellular fitness, population dynamics, and ultimately evolutionary trajectories.

6. Adaptation through exploration.

CAS adapt via exploration of configuration space under constraints of selection and mutation. RNA, with high mutability, and proteins, with structural stability, embody complementary strategies of exploration and consolidation. These principles suggest that the coevolution of genetic codes and proteins is best understood not as a linear sequence of innovations, but as the emergent synchronization of interdependent components. CAS provides both the language and the mathematical tools to formalize this process, linking molecular detail with system-level behavior.

B. Adaptive landscapes, punctuated equilibria, and coevolution theory

The dynamics of RNA--protein coevolution can be framed in relation to three foundational concepts in evolutionary biology: adaptive landscapes, punctuated equilibria, and coevolutionary theory. Complex Adaptive Systems (CAS) provide a means to unify and formalize these perspectives.

1. Adaptive landscapes.

Sewall Wright's metaphor of fitness landscapes remains central in evolutionary thought: genotypes map to fitness values that create peaks (adapted states) and valleys (maladapted states). For RNA--protein systems, the landscape is multi-dimensional and coupled: RNA codon assignments and protein folding stability jointly determine fitness. CAS modeling allows the landscape to be represented as a co-evolving surface, where changes in RNA alter protein stability, and vice versa, generating shifting adaptive topographies.

HALAMAN :
Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun