Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 96
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

By varying the nonlinear coefficient \lambda, we observe:

This demonstrates that nonlinearity controls the curvature depth and scale, supporting the idea that topology arises from field self-interaction strength, analogous to gravitational self-energy.

5. Implication for Cosmology: Proto-Metric Field Analogy

In gravitational theories, the metric tensor gg_{\mu\nu}g defines spacetime curvature. In our analog, the information field intensity I(x,t)I(x,t)I(x,t) and its nonlinear evolution acts as an emergent proto-metric, encoding:

Curvature magnitude via energy concentration
Geometric gradients via field flux variation
Topology via phase and amplitude soliton structures
Thus, the field does not simulate curvature by analogy alone---it generates curvature-like behavior intrinsically, grounded in physical interaction and resonance.

C. Topological Structures and Phase Defects

Formation of vortex-like defects, solitonic textures, and phase singularities as emergent topological markers

In this section, we explore how nonlinear blink excitation in the information field system not only produces localized energy and curvature analogs, but also leads to the emergence of topologically protected structures---such as phase defects, vortices, and solitonic textures---analogous to features observed in condensed matter, optics, and even early universe field theories.

1. Phase Defects and Vortices

By decomposing the complex field I(x,t)=A(x,t)ei(x,t)I(x,t) = A(x,t) e^{i \phi(x,t)}I(x,t)=A(x,t)ei(x,t), we analyze the spatial distribution of the phase field (x,t)\phi(x,t)(x,t).

Simulations show:

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun