where the external source B(x,t)B(x,t)B(x,t) triggers a sudden, localized information-like excitation.
Below is the breakdown of key experimental modules, benchmark values, and physical mappings.
1. Core Subsystems
a. Excitation Module
Pulse Generator: Ultrafast femtosecond laser or microwave pulse shaping
Goal: Create a spatially and temporally localized source B(x,t)B(x,t)B(x,t) mimicking a delta-function-like impulse (Blink)
Pulse Duration: 50--200 fs50 -- 200 \text{ fs}50--200 fs (optical regime) or 1--10 ns1 -- 10 \text{ ns}1--10 ns (magnonic regime)
Pulse Energy: 103--1 J10^{-3} -- 1 \text{ J}103--1 J (tunable to induce nonlinear regime)
b. Medium / Lattice Substrate
YIG Thin Film (Yttrium Iron Garnet): For magnon analogs; well-established nonlinear spin-wave medium
Photonic Lattice / Metamaterial Array: For optical pulse propagation with controllable nonlinearity
Cavity-Embedded Optical Lattice (BEC Platform): For quantum vacuum analogs and metric tracking
Size Scale: 100 m--10 mm100 \ \mu m -- 10 \ mm100 m--10 mm
Effective Propagation Velocity ccc: 103--106 m/s10^3 -- 10^6 \ \text{m/s}103--106 m/s
c. Detection Array
TR-MOKE / BLS for magnetic dynamics
Digital Holography for phase topology
Quantum NV Centers for magnetic field topologies
CCD or SPAD Cameras for intensity/phase-resolved real-time imaging
2. Key Benchmark Parameters
Table isn't inserted
3. Physical Mapping of Theoretical Terms
4. Feasibility Summary
This prototype design is feasible within current experimental capabilities. Each component maps to existing or near-future technologies, and parameters are within reach of: