Mohon tunggu...
Asep Setiawan
Asep Setiawan Mohon Tunggu... Membahasakan fantasi. Menulis untuk membentuk revolusi. Dedicated to the rebels.

Nalar, Nurani, Nyali. Curious, Critical, Rebellious. Mindset, Mindmap, Mindful

Selanjutnya

Tutup

Inovasi

Lab-Based Realization of a Blink Universe via Magnon and Quantum Vacuum Analog System

17 September 2025   17:18 Diperbarui: 17 September 2025   17:18 96
+
Laporkan Konten
Laporkan Akun
Kompasiana adalah platform blog. Konten ini menjadi tanggung jawab bloger dan tidak mewakili pandangan redaksi Kompas.
Lihat foto
Inovasi. Sumber ilustrasi: PEXELS/Jcomp

The simulations reveal several classes of localized structures:

a. Solitonic and Breather Modes:

Stable or oscillatory localized peaks in the energy field,
Maintain integrity over time, often oscillating in amplitude ("breathing"),
Resemble soliton trains in 1D or dissipative solitons in higher dimensions.
b. Energy Bubbles:

Spherical or ellipsoidal energy concentration zones,
Surrounded by low-energy voids, indicating nonlinear trapping,
Analogous to inflating vacuum domains in cosmological inflationary theories.
c. Topological Domains:

Phase-locked regions separated by sharp domain boundaries,
Exhibit persistent contrast and stability, resistant to small perturbations,
Similar in topology to magnetic skyrmions or spin textures.
d. Curvature Spikes:

High Laplacian peaks of the energy density interpreted as scalar curvature,
Cluster near regions of nonlinear energy focusing,
Offer analogs to compactified energy zones, black hole cores, or proto-galaxies.
3. Metrics for Structure Detection

We utilize a combination of physical observables to quantify these structures:

Local Energy Density: (x,t)=I(x,t)2\rho(x,t) = |I(x,t)|^2(x,t)=I(x,t)2, to identify localized energy wells.
Phase Gradient: arg(I)\nabla \arg(I)arg(I), to detect domain boundaries and phase defects.
Curvature Proxy: R(x,t)2(x,t)R(x,t) \sim -\nabla^2 \rho(x,t)R(x,t)2(x,t), as an emergent metric field.
Entropy-like Measure: S(t)=(x,t)log(x,t)dxS(t) = \int \rho(x,t) \log \rho(x,t) dxS(t)=(x,t)log(x,t)dx, to track information ordering.
These metrics evolve non-trivially and display clear transitions from disorder (high entropy, homogeneous density) to order (low entropy, structured localizations).

4. Structure Interactions and Evolution

The structures are not static; they interact dynamically through:

Annihilation: Opposite phase or anti-symmetric structures cancel out.
Fusion: Two neighboring localized peaks merge into a stronger excitation.
Repulsion and Orbiting: Certain breather pairs form stable bound states, orbiting each other under effective field-mediated interaction.
These interactions mimic field-theoretic particle dynamics and support the hypothesis that geometry and structure can emerge from pure field dynamics.

Mohon tunggu...

Lihat Konten Inovasi Selengkapnya
Lihat Inovasi Selengkapnya
Beri Komentar
Berkomentarlah secara bijaksana dan bertanggung jawab. Komentar sepenuhnya menjadi tanggung jawab komentator seperti diatur dalam UU ITE

Belum ada komentar. Jadilah yang pertama untuk memberikan komentar!
LAPORKAN KONTEN
Alasan
Laporkan Konten
Laporkan Akun